Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters

Maxence Noble¹ Valentin de Bortoli² Arnaud Doucet³ Alain Durmus¹

¹Centre de Mathématiques Appliquées, Ecole Polytechnique Institut Polytechnique de Paris, France

²Département d'Informatique, École Normale Supérieure CNRS. Université PSL. Paris. France

³Department of Statistics, University of Oxford, UK

3

< < >> < <</>

Outline

Motivations and background

2 TreeDSB Algorithm

A little bit of theory

4 Numerical experiments

イロト イポト イヨト イヨト

唐 のへで

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

イロト イポト イヨト イヨト

3

Outline

Motivations and background

- Optimal Transport and extensions
- Link with Schrödinger Bridge
- Our framework

2 TreeDSB Algorithm

A little bit of theory

4 Numerical experiments

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Motivations of Optimal transport

Probability distributions are everywhere in machine learning.

글 > : < 글 >

< D > < A >

3

Figure: From left to right: Bayesian posterior distribution (supported on \mathbb{R}^d), MNIST (supported on $[0,1]^{28\times 28}$) and CELEBA (supported on $[0,1]^{3\times 64\times 64}$).

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Motivations of Optimal transport

Probability distributions are everywhere in machine learning.

イロト イポト イヨト イヨト

Figure: From left to right: Bayesian posterior distribution (supported on \mathbb{R}^d), MNIST (supported on $[0,1]^{28\times28}$) and CELEBA (supported on $[0,1]^{3\times64\times64}$).

- How to compare distributions ?
- How to evaluate similarity between distributions ?
- How to define a proper geometry in the space of distributions ?

Optimal transport (OT) provides tools to answer this question!

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ ・ クタペ

Formulation from Kantorovich (1942)

Define $\mathscr{P}^{(2)}$ as the set of probability measures defined on $\mathbb{R}^d \times \mathbb{R}^d$.

Given a cost function $c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $\mu_0, \mu_1 \in \mathscr{P}(\mathbb{R}^d)$, we aim at solving

$$\pi^{\star} = \arg\min\left\{\int c(x_0, x_1) \mathrm{d}\pi(x_0, x_1) : \pi \in \mathscr{P}^{(2)}, \ \pi_0 = \mu_0, \ \pi_1 = \mu_1\right\}$$

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Formulation from Kantorovich (1942)

Define $\mathscr{P}^{(2)}$ as the set of probability measures defined on $\mathbb{R}^d \times \mathbb{R}^d$.

Given a cost function $c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $\mu_0, \mu_1 \in \mathscr{P}(\mathbb{R}^d)$, we aim at solving

$$\pi^{\star} = \arg\min\left\{\int c(x_0, x_1) \mathrm{d}\pi(x_0, x_1) : \pi \in \mathscr{P}^{(2)}, \ \pi_0 = \mu_0, \ \pi_1 = \mu_1\right\}$$

• With a quadratic cost:

we obtain the Wasserstein-2 distance between μ_0 and μ_1

$$W_2(\mu_0,\mu_1) = \inf \left\{ \int \|x_0 - x_1\|^2 \mathrm{d}\pi(x_0,x_1) : \pi \in \mathscr{P}^{(2)}, \ \pi_0 = \mu_0, \ \pi_1 = \mu_1 \right\}^{1/2}$$

Figure: Illustration from the slides of Rémi⊏Flamary. < ₹ > < ₹ → २</p>
M. Noble, V. de Bortoli, A. Doucet, A. Durmus 5/30

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のので

Extension to the multimarginal setting

Define $\mathscr{P}^{(\ell+1)}$ as the set of probability measures defined on $(\mathbb{R}^d)^{\ell+1}$.

Given a cost function $c : (\mathbb{R}^d)^{\ell+1} \to \mathbb{R}$, a subset $S \subset \{0, \ldots, \ell\}$ and a family of probability measures $\{\mu_i\}_{i \in S} \in (\mathscr{P}(\mathbb{R}^d))^{|S|}$, we consider the mOT problem

$$\pi^{\star} = \arg\min\left\{\int c(x_{0:\ell}) \mathrm{d}\pi(x_{0:\ell}) : \pi \in \mathscr{P}^{(\ell+1)}, \ \pi_i = \mu_i \ , \forall i \in \mathsf{S}\right\}$$

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Extension to the multimarginal setting

Define $\mathscr{P}^{(\ell+1)}$ as the set of probability measures defined on $(\mathbb{R}^d)^{\ell+1}$.

Given a cost function $c : (\mathbb{R}^d)^{\ell+1} \to \mathbb{R}$, a subset $S \subset \{0, \ldots, \ell\}$ and a family of probability measures $\{\mu_i\}_{i \in S} \in (\mathscr{P}(\mathbb{R}^d))^{|S|}$, we consider the mOT problem

$$\pi^{\star} = \arg\min\left\{\int \underline{c}(x_{0:\ell}) \mathrm{d}\pi(x_{0:\ell}) : \pi \in \mathscr{P}^{(\ell+1)}, \ \pi_i = \mu_i \ , \forall i \in \mathsf{S}\right\}$$

• If
$$c(x_{0:\ell}) = \sum_{i=1}^{\ell} w_i \|x_0 - x_i\|^2$$
 with $\{w_i\} \in (\mathbb{R}_+)^{|\mathsf{S}|}$ and $\mathsf{S} = \{1, \dots, \ell\}$:
 $\pi_0^{\star} = \arg\min\left\{\sum_{i=1}^{\ell} w_i W_2^2(\nu, \mu_i) : \nu \in \mathscr{P}(\mathbb{R}^d)\right\}$,

mOT defines the Wasserstein barycenter (Peyré et al., 2019) of the $\{\mu_i\}$.

Figure: Illustration from Solomon et al. (2015).

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

3

Tree-based OT

Consider an **undirected tree** (connected acyclic graph) T = (V, E) with vertices V (identified with $\{0, \ldots, \ell\}$), edges E and edge weights $\{w_{v,v'}\} \in (\mathbb{R}_+)^{|E|}$.

Figure: Illustration from Solomon et al. (2015).

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Tree-based OT

Consider an **undirected tree** (connected acyclic graph) T = (V, E) with vertices V (identified with $\{0, \ldots, \ell\}$), edges E and edge weights $\{w_{v,v'}\} \in (\mathbb{R}_+)^{|E|}$.

Figure: Illustration from Solomon et al. (2015). By defining a **quadratic tree-based cost** (Haasler et al., 2021)

$$c(x_{0:\ell}) = \sum_{\{v,v'\} \in \mathsf{E}} w_{v,v'} \|x_v - x_{v'}\|^2 ,$$

mOT recovers the Wasserstein propagation problem (Solomon et al., 2014)

 $\arg\min\left\{\sum_{\{v,v'\}\in\mathsf{E}} w_{v,v'}W_2^2(\nu_v,\nu_{v'}): \{\nu_v\}\in(\mathscr{P}(\mathbb{R}^d))^{|\mathsf{V}|}, \nu_v=\mu_v, \forall v\in\mathsf{S}\right\}.$ It reduces to a Wasserstein barycenter problem when T_u is a star-shaped tree level.

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Entropy-regularized OT (EOT)

Solving OT problems faces **computational challenges** in practice (Pele and Werman, 2009), which motivates to consider an **entropic regularization** of OT.

In the multimarginal setting, we now aim to solve the EmOT problem

$$\pi^{\star} = \arg\min\left\{\int c(x_{0:\ell}) \mathrm{d}\pi(x_{0:\ell}) + \varepsilon \mathrm{KL}(\pi|\boldsymbol{\nu}) : \pi \in \mathscr{P}^{(\ell+1)}, \ \pi_i = \mu_i \ , \forall i \in \mathsf{S}\right\}$$

- $\varepsilon > 0$: regularization hyperparameter.
- $\nu \in \mathscr{P}^{(\ell+1)}$: regularization probability measure.
- $KL(\pi|\nu)^1$: Kullback-Leibler divergence between π and ν .

 ${}^{\mathbf{1}}\mathrm{KL}(\pi|\nu) = \int \log(\mathrm{d}\pi/\mathrm{d}\nu)\mathrm{d}\pi \text{ if } \pi \ll \nu, \ \mathrm{KL}(\pi|\nu) = \infty \text{ otherwise.} \quad \text{otherwise.} \quad$

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Entropy-regularized OT (EOT)

Solving OT problems faces **computational challenges** in practice (Pele and Werman, 2009), which motivates to consider an **entropic regularization** of OT.

In the multimarginal setting, we now aim to solve the EmOT problem

$$\pi^{\star} = \arg\min\left\{\int c(x_{0:\ell}) \mathrm{d}\pi(x_{0:\ell}) + \varepsilon \mathrm{KL}(\pi|\boldsymbol{\nu}) : \pi \in \mathscr{P}^{(\ell+1)}, \ \pi_i = \mu_i \ , \forall i \in \mathsf{S}\right\}$$

- $\varepsilon > 0$: regularization hyperparameter.
- $\nu \in \mathscr{P}^{(\ell+1)}$: regularization probability measure.
- $KL(\pi|\nu)^1$: Kullback-Leibler divergence between π and ν .

The discrete state-space counterpart of EmOT can be efficiently solved with Sinkhorn algorithm (Cuturi, 2013; Knight, 2008; Sinkhorn and Knopp, 1967).

$$\gamma = 0 \quad \gamma = 0.0001 \quad \gamma = 0.001 \quad \gamma = 0.01 \quad \gamma = 0.1$$

Figure: Illustration from Solomon et al. (2015).

 ${}^{\mathbf{1}}\mathrm{KL}(\pi|\nu) = \int \log(\mathrm{d}\pi/\mathrm{d}\nu)\mathrm{d}\pi \text{ if } \pi \ll \nu, \ \mathrm{KL}(\pi|\nu) = \infty \text{ otherwise.} \quad \forall \forall \nu \in \mathbb{R} \quad \forall \forall \nu \in \mathbb{R} \quad \forall \forall \nu \in \mathbb{R}$

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Schrödinger Bridge Problem

²Stochastic Differential Equation M. Noble, V. de Bortoli, A. Doucet, A. Durmus 9/30

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Schrödinger Bridge Problem

Given a time horizon T > 0, a reference path measure \mathbb{Q} and $\mu_0, \mu_1 \in \mathscr{P}(\mathbb{R}^d)$, the *dynamic* Schrödinger Bridge (SB) problem amounts to find

 $\mathbb{P}^{\star} = \operatorname{argmin}\{\operatorname{KL}(\mathbb{P}|\mathbb{Q}) : \mathbb{P} \in \mathscr{P}(\operatorname{C}([0,T],\mathbb{R}^d)), \mathbb{P}_0 = \mu_0, \mathbb{P}_T = \mu_1\}$

² Stochastic Differential Equation		< <>>	→良→	(画)	腰	うく
M. Noble, V. de Bortoli, A. Doucet, A. Durmus	9 / 30					

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

A B M A B M

3

Schrödinger Bridge Problem

Given a time horizon T > 0, a reference path measure \mathbb{Q} and $\mu_0, \mu_1 \in \mathscr{P}(\mathbb{R}^d)$, the *dynamic* Schrödinger Bridge (SB) problem amounts to find

 $\mathbb{P}^{\star} = \operatorname{argmin}\{\operatorname{KL}(\mathbb{P}|\mathbb{Q}) : \mathbb{P} \in \mathscr{P}(\operatorname{C}([0,T],\mathbb{R}^d)), \mathbb{P}_0 = \mu_0, \mathbb{P}_T = \mu_1\}$

If \mathbb{Q} is associated with the SDE² $d\mathbf{X}_t = -a\mathbf{X}_t dt + d\mathbf{B}_t$, with $a \ge 0$, Léonard (2014) states that $\mathbb{P}^*_{0,T}$ solves the <u>static-SB</u> problem

$$\operatorname{argmin}\{\operatorname{KL}(\pi|\mathbb{Q}_{0,T}): \ \pi \in \mathscr{P}^{(2)}, \ \pi_0 = \mu_0, \ \pi_1 = \mu_1\},\$$

and we have

static-SB
$$\iff$$
 EOT with $\varepsilon = 2\sinh(aT)/a$ if $a > 0$ or $\varepsilon = 2T$ if $a = 0$.

Moreover, we have

static-SB
$$\iff$$
 SB, since $\mathbb{P}^* = \mathbb{P}_{0,T}^* \otimes \mathbb{Q}_{|0,T}$.

²Stochastic Differential Equation

M. Noble, V. de Bortoli, A. Doucet, A. Durmus 9/30

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Iterative Proportional Fitting (IPF) procedure

The IPF procedure³ (Sinkhorn and Knopp, 1967; Knight, 2008; Peyré et al., 2019; Cuturi and Doucet, 2014) aims at solving SB with the iterates $(\mathbb{P}^n)_{n \in \mathbb{N}}$ defined by $\mathbb{P}^0 = \mathbb{Q}$ and for any $n \in \mathbb{N}$

$$\begin{split} \mathbb{P}^{2n+1} &= \operatorname{argmin}\{\operatorname{KL}(\mathbb{P}|\mathbb{P}^{2n}) \, : \, \mathbb{P}_{T} = \mu_{1}\}, \\ &= \mu_{1} \otimes (\mathbb{P}^{2n})_{|0}^{R} \left(\textit{backward} \right), \\ \mathbb{P}^{2n+2} &= \operatorname{argmin}\{\operatorname{KL}(\mathbb{P}|\mathbb{P}^{2n+1}) \, : \, \mathbb{P}_{0} = \mu_{0}\} \\ &= \mu_{0} \otimes \mathbb{P}^{2n+1}_{|0} \left(\textit{forward} \right), \end{split}$$

where R is the **time-reversal** operator.

³Note that it is the continuous state-space counterpart of Sinkhorn algorithm. () 🗄 👘 🚊 🔗 🤇 🔅

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Iterative Proportional Fitting (IPF) procedure

The IPF procedure³ (Sinkhorn and Knopp, 1967; Knight, 2008; Peyré et al., 2019; Cuturi and Doucet, 2014) aims at solving SB with the iterates $(\mathbb{P}^n)_{n \in \mathbb{N}}$ defined by $\mathbb{P}^0 = \mathbb{Q}$ and for any $n \in \mathbb{N}$

$$\begin{split} \mathbb{P}^{2n+1} &= \operatorname{argmin}\{\operatorname{KL}(\mathbb{P}|\mathbb{P}^{2n}) : \mathbb{P}_T = \mu_1\}, \\ &= \mu_1 \otimes (\mathbb{P}^{2n})_{|0}^R \text{ (backward) }, \\ \mathbb{P}^{2n+2} &= \operatorname{argmin}\{\operatorname{KL}(\mathbb{P}|\mathbb{P}^{2n+1}) : \mathbb{P}_0 = \mu_0\} \\ &= \mu_0 \otimes \mathbb{P}^{2n+1}_{|0} \text{ (forward) }, \end{split}$$

where R is the **time-reversal** operator.

If \mathbb{P} is associated with $d\mathbf{X}_t = f_t(\mathbf{X}_t)dt + d\mathbf{B}_t$, then under mild assumptions (Haussmann and Pardoux, 1986; Cattiaux et al., 2021), \mathbb{P}^R is associated with

$$\mathbf{d}\mathbf{Y}_t = \{-f_{T-t}(\mathbf{Y}_t) + \nabla \log p_{T-t}(\mathbf{Y}_t)\}\mathbf{d}t + \mathbf{d}\mathbf{B}_t,$$

where p_t is the density of \mathbb{P}_t w.r.t. the Lebesgue measure.

³Note that it is the continuous state-space counterpart of Sinkhorn algorithm. 🕢 🗄 👘 🚊 🔊 🔍

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Diffusion Schrödinger Bridge (DSB)

De Bortoli et al. (2021) propose a numerical scheme⁴, **Diffusion Schrödinger Bridge**, to approximate the IPF iterates by implementing

- an Euler-Maruyama time discretization of the forward/backward SDEs,
- an approximation of the scores via 2 neural networks (forward/backward).

⁴This algorithm shows great performance for small values of $T_{2} \rightarrow \langle \overline{\partial} \rangle \rightarrow \langle \overline{\partial} \rangle \rightarrow \langle \overline{\partial} \rangle \rightarrow \langle \overline{\partial} \rangle \rightarrow \langle \overline{\partial} \rangle$

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Diffusion Schrödinger Bridge (DSB)

De Bortoli et al. (2021) propose a numerical scheme⁴, Diffusion Schrödinger Bridge, to approximate the IPF iterates by implementing

- an Euler-Maruyama time discretization of the forward/backward SDEs,
- an approximation of the scores via 2 neural networks (forward/backward).

Figure: Illustration from De Bortoli et al. (2021).

⁴This algorithm shows great performance for small values of $T \to \langle \neg \rangle \to \langle \neg \rangle \to \langle \neg \rangle \to \langle \neg \rangle \to \langle \neg \rangle$

M. Noble, V. de Bortoli, A. Doucet, A. Durmus 11/30

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

38

イロン イボン イヨン イヨン

Extension of EmOT to SB formulation

We recall the regularized OT formulation in the multimarginal setting (EmOT)

$$\pi^{\star} = \arg\min\left\{\int c(x_{0:\ell}) \mathrm{d}\pi(x_{0:\ell}) + \varepsilon \mathrm{KL}(\pi|\nu) : \pi \in \mathscr{P}^{(\ell+1)}, \ \pi_i = \mu_i \ , \forall i \in \mathsf{S}\right\}.$$

⁵Note that π^0 may not be a probability measure.

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

イロト イポト イヨト イヨト

3

Extension of EmOT to SB formulation

We recall the regularized OT formulation in the multimarginal setting (EmOT)

$$\pi^{\star} = \arg\min\left\{\int c(x_{0:\ell}) \mathrm{d}\pi(x_{0:\ell}) + \varepsilon \mathrm{KL}(\pi|\nu) : \pi \in \mathscr{P}^{(\ell+1)}, \ \pi_i = \mu_i \ , \forall i \in \mathsf{S}\right\}.$$

If $\nu \ll \text{Leb}$, then **EmOT** can be rewritten in a **static-SB** fashion, called **mSB**

$$\pi^{\star} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^{0}) : \pi \in \mathscr{P}^{(\ell+1)}, \ \pi_{i} = \mu_{i}, \forall i \in \mathsf{S}\},\$$

with $(\mathrm{d}\pi^0/\mathrm{dLeb})(x_{0:\ell}) \propto \exp[-c(x_{0:\ell})/\varepsilon](\mathrm{d}\nu/\mathrm{dLeb})(x_{0:\ell})^5$.

Similarly to the bimarginal setting, we obtain

EmOT param. by c, ε and $\nu \iff \mathsf{mSB}$ param. by π^0 .

⁵Note that π^0 may not be a probability measure.

M. Noble, V. de Bortoli, A. Doucet, A. Durmus 12/30

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

◆□▶ ◆◎▶ ◆注▶ ◆注▶ ─ 法 ─ のへで

Formulation of Tree-based SB

Consider an undirected tree $\mathsf{T}=(\mathsf{V},\mathsf{E})$ with $\mathsf{V}\equiv\{0,\ldots,\ell\}$ and assume that

• S is the set of the leaves of T,

•
$$c(x_{0:\ell}) = \sum_{\{v,v'\} \in \mathsf{E}} w_{v,v'} \|x_v - x_{v'}\|_2^2$$

• $d\nu/dLeb(x_{0:\ell}) = \varphi_r(x_r)$ for some $r \in V$.

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のので

Formulation of Tree-based SB

Consider an undirected tree $\mathsf{T}=(\mathsf{V},\mathsf{E})$ with $\mathsf{V}\equiv\{0,\ldots,\ell\}$ and assume that

- S is the set of the leaves of T,
- $c(x_{0:\ell}) = \sum_{\{v,v'\} \in \mathsf{E}} w_{v,v'} \|x_v x_{v'}\|_2^2$
- $d\nu/dLeb(x_{0:\ell}) = \varphi_r(x_r)$ for some $r \in V$.

Then, $\pi^0 \in \mathscr{P}(\mathbb{R}^d)$ has a **Markovian** factorization along $\mathsf{T}_r = (\mathsf{V}, \mathsf{E}_r)$, the directed version of T rooted in r,

$$\pi^0 = \pi^0_r \bigotimes_{(v,v') \in \mathsf{E}_r} \pi^0_{v'|v},$$

where $\pi^0_{v'|v}(\cdot \mid x_v) = N(x_v, \varepsilon/(2w_{v,v'})I_d)$ and $\pi^0_r \ll \text{Leb}$ with density φ_r .

Optimal Transport and extensions Link with Schrödinger Bridge Our framework

Formulation of Tree-based SB

Consider an undirected tree $\mathsf{T}=(\mathsf{V},\mathsf{E})$ with $\mathsf{V}\equiv\{0,\ldots,\ell\}$ and assume that

- S is the set of the leaves of T,
- $c(x_{0:\ell}) = \sum_{\{v,v'\}\in\mathsf{E}} w_{v,v'} \|x_v x_{v'}\|_2^2$
- $d\nu/dLeb(x_{0:\ell}) = \varphi_r(x_r)$ for some $r \in V$.

Then, $\pi^0 \in \mathscr{P}(\mathbb{R}^d)$ has a **Markovian** factorization along $\mathsf{T}_r = (\mathsf{V}, \mathsf{E}_r)$, the directed version of T rooted in r,

$$\pi^0 = \pi^0_r \bigotimes_{(v,v') \in \mathsf{E}_r} \pi^0_{v'|v},$$

where $\pi^0_{v'|v}(\cdot \mid x_v) = N(x_v, \varepsilon/(2w_{v,v'})I_d)$ and $\pi^0_r \ll \text{Leb}$ with density φ_r .

We finally obtain a tree-based formulation of the mSB problem (TreeSB)

$$\pi^{\star} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^{0}) : \pi \in \mathscr{P}^{(|\mathsf{V}|)}, \pi_{i} = \mu_{i}, \forall i \in \mathsf{S}\}$$

with
$$\pi^0$$
 param. by r and φ_r ,

and propose to solve it with our algorithm Tree-Based Diffusion Schrödinger Bridge (TreeDSB), which is the natural extension of DSB.

Introduction to TreeDSB Tree-based IPF procedure

イロト イボト イヨト イヨト

腰

Outline

Motivations and background

2 TreeDSB Algorithm

- Introduction to TreeDSB
- Tree-based IPF procedure

3 A little bit of theory

4 Numerical experiments

M. Noble, V. de Bortoli, A. Doucet, A. Durmus 14/30

Introduction to TreeDSB Tree-based IPF procedure

Before starting

Some notation:

- $S = \{i_0, \ldots, i_{K-1}\}$, and thus |S| = K.
- $k_n = (n-1) \mod(K), k_n + 1 = n \mod(K).$
- $T_{v,v'} = \varepsilon/(2w_{v,v'})$ for any $\{v,v'\} \in \mathsf{E}.$
- $\operatorname{Ext}(\mathbb{P}) = \mathbb{P}_{0,T} \in \mathscr{P}^{(2)}$ for any path measure $\mathbb{P} \in \mathscr{P}(\operatorname{C}([0,T],\mathbb{R}^d)).$

We make the following assumptions:

- $\mu_i \ll \text{Leb}$ for any $i \in S$,
- $r \in S$ (optional),
- $\varphi_r = d\mu_{i_{K-1}}/dLeb$ (optional).

In practice:

- r may be chosen in V\S (only the first iteration of TreeDSB differs),
- if $r \in S$, the choice of φ_r does not change the solutions of TreeSB⁶.

Relying on Benamou et al. (2015), the extension of the <u>static IPF</u> procedure in the **multimarginal** setting (**mIPF**) is given by

$$\pi^{n+1} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^n) : \pi \in \mathscr{P}^{(|\mathsf{V}|)}, \ \pi_{i_{k_n+1}} = \mu_{i_{k_n+1}}\},\$$

⁷This is directly obtained by considering branching processes with deterministic time steps.

Relying on Benamou et al. (2015), the extension of the <u>static IPF</u> procedure in the **multimarginal** setting (**mIPF**) is given by

$$\pi^{n+1} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^n) : \pi \in \mathscr{P}^{(|\mathsf{V}|)}, \ \pi_{i_{k_n+1}} = \mu_{i_{k_n+1}}\},\$$

In the tree-based setting, we prove that the dynamic version of mIPF⁷ amounts to recursively define path measures $\overline{\{\mathbb{P}^n_{(v,v')}\}}_{n\in\mathbb{N},(v,v')\in\mathsf{E}_{k_n}}$ as follows.

Proposition 1

• At step
$$n = 0$$
: $\mathbb{P}^{0}_{(v,v')|0} \sim (\mathbf{B}_{t})_{t \in [0,T_{v,v'}]}$ for
any $(v,v') \in \mathsf{E}_{k_{0}}$ and $\mathbb{P}^{0}_{(r,\cdot),0} = \pi^{0}_{r}$.

⁷This is directly obtained by considering branching processes with deterministic time steps.

Relying on Benamou et al. (2015), the extension of the <u>static IPF</u> procedure in the **multimarginal** setting (**mIPF**) is given by

$$\pi^{n+1} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^n) : \pi \in \mathscr{P}^{(|\mathsf{V}|)}, \ \pi_{i_{k_n+1}} = \mu_{i_{k_n+1}}\},\$$

In the tree-based setting, we prove that the dynamic version of mIPF⁷ amounts to recursively define path measures $\overline{\{\mathbb{P}^n_{(v,v')}\}}_{n\in\mathbb{N},(v,v')\in\mathsf{E}_{k_n}}$ as follows.

Proposition 1

• At step
$$n = 0$$
: $\mathbb{P}^{0}_{(v,v')|0} \sim (\mathbf{B}_{t})_{t \in [0,T_{v,v'}]}$ for
any $(v,v') \in \mathsf{E}_{k_{0}}$ and $\mathbb{P}^{0}_{(r,\cdot),0} = \pi^{0}_{r}$.
• At step $n + 1$: consider $\mathsf{T}_{k_{n}+1} = (\mathsf{V},\mathsf{E}_{k_{n}+1})$
rooted in $i_{k_{n}+1}$ and $\mathsf{P} = \operatorname{path}_{\mathsf{T}_{k_{n}}}(i_{k_{n}}, i_{k_{n}+1})$.
Let $(v,v') \in \mathsf{E}_{k_{n}+1}$.

 $^{^7}$ This is directly obtained by considering branching processes with deterministic time steps. \sim \sim

Relying on Benamou et al. (2015), the extension of the <u>static IPF</u> procedure in the **multimarginal** setting (**mIPF**) is given by

$$\pi^{n+1} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^n) : \pi \in \mathscr{P}^{(|\mathsf{V}|)}, \ \pi_{i_{k_n+1}} = \mu_{i_{k_n+1}}\},\$$

In the tree-based setting, we prove that the dynamic version of mIPF⁷ amounts to recursively define path measures $\overline{\{\mathbb{P}^n_{(v,v')}\}}_{n\in\mathbb{N},(v,v')\in\mathsf{E}_{k_n}}$ as follows.

Proposition 1

• At step
$$n = 0$$
: $\mathbb{P}^{0}_{(v,v')|0} \sim (\mathbf{B}_{t})_{t \in [0,T_{v,v'}]}$ for
any $(v,v') \in \mathsf{E}_{k_{0}}$ and $\mathbb{P}^{0}_{(r,\cdot),0} = \pi^{0}_{r}$.
• At step $n + 1$: consider $\mathsf{T}_{k_{n}+1} = (\mathsf{V},\mathsf{E}_{k_{n}+1})$
rooted in $i_{k_{n}+1}$ and $\mathsf{P} = \operatorname{path}_{\mathsf{T}_{k_{n}}}(i_{k_{n}}, i_{k_{n}+1})$.
Let $(v,v') \in \mathsf{E}_{k_{n}} \setminus \mathsf{P}$: $\mathbb{P}^{n+1}_{(v,v')} = \pi^{n+1}_{v} \otimes \mathbb{P}^{n}_{(v,v')|0}$.

⁷This is directly obtained by considering branching processes with deterministic time steps.

Relying on Benamou et al. (2015), the extension of the <u>static IPF</u> procedure in the **multimarginal** setting (**mIPF**) is given by

$$\pi^{n+1} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^n) : \pi \in \mathscr{P}^{(|\mathsf{V}|)}, \ \pi_{i_{k_n+1}} = \mu_{i_{k_n+1}}\},\$$

In the tree-based setting, we prove that the dynamic version of mIPF⁷ amounts to recursively define path measures $\overline{\{\mathbb{P}^n_{(v,v')}\}}_{n\in\mathbb{N},(v,v')\in\mathsf{E}_{k_n}}$ as follows.

Proposition 1

• At step
$$n = 0$$
: $\mathbb{P}^{0}_{(v,v')|0} \sim (\mathbf{B}_{t})_{t \in [0,T_{v,v'}]}$ for
any $(v,v') \in \mathbf{E}_{k_{0}}$ and $\mathbb{P}^{0}_{(r,\cdot),0} = \pi^{0}_{r}$.
• At step $n + 1$: consider $\mathbf{T}_{k_{n}+1} = (\mathbf{V}, \mathbf{E}_{k_{n}+1})$
rooted in $i_{k_{n}+1}$ and $\mathbf{P} = \operatorname{path}_{\mathbf{T}_{k_{n}}}(i_{k_{n}}, i_{k_{n}+1})$.
Let $(v,v') \in \mathbf{E}_{k_{n}} \setminus \mathbf{P}$: $\mathbb{P}^{n+1}_{(v,v')} = \pi^{n+1}_{v} \otimes \mathbb{P}^{n}_{(v,v')|0}$.
• If $(v',v) \in \mathbf{P}$: $\mathbb{P}^{n+1}_{(v,v')} = \pi^{n+1}_{v} \otimes (\mathbb{P}^{n}_{(v',v)})^{R}|_{0}$.

⁷This is directly obtained by considering branching processes with deterministic time steps. -9 \propto

 \rightarrow Edges E_k \rightarrow Edges E_{k+1} Path P

Relying on Benamou et al. (2015), the extension of the <u>static IPF</u> procedure in the **multimarginal** setting (**mIPF**) is given by

$$\pi^{n+1} = \operatorname{argmin}\{\operatorname{KL}(\pi|\pi^n) : \pi \in \mathscr{P}^{(|\mathsf{V}|)}, \ \pi_{i_{k_n+1}} = \mu_{i_{k_n+1}}\},\$$

In the tree-based setting, we prove that the dynamic version of mIPF⁷ amounts to recursively define path measures $\overline{\{\mathbb{P}^n_{(v,v')}\}}_{n\in\mathbb{N},(v,v')\in\mathsf{E}_{k_n}}$ as follows.

Proposition 1

• At step
$$n = 0$$
: $\mathbb{P}^{0}_{(v,v')|0} \sim (\mathbf{B}_{t})_{t \in [0, T_{v,v'}]}$ for
any $(v, v') \in \mathbf{E}_{k_{0}}$ and $\mathbb{P}^{0}_{(r,\cdot),0} = \pi^{0}_{r}$.
• At step $n + 1$: consider $\mathbf{T}_{k_{n}+1} = (\mathbf{V}, \mathbf{E}_{k_{n}+1})$
rooted in $i_{k_{n}+1}$ and $\mathbf{P} = \operatorname{path}_{\mathbf{T}_{k_{n}}}(i_{k_{n}}, i_{k_{n}+1})$.
Let $(v, v') \in \mathbf{E}_{k_{n}} \setminus \mathbf{P}$: $\mathbb{P}^{n+1}_{(v,v')} = \pi^{n+1}_{v} \otimes \mathbb{P}^{n}_{(v,v')|0}$.
• If $(v', v) \in \mathbf{P}$: $\mathbb{P}^{n+1}_{(v,v')} = \pi^{n+1}_{v} \otimes (\mathbb{P}^{n}_{(v',v)})^{R}_{|0}$.

We get that $\operatorname{Ext}(\mathbb{P}^n_{(v,v')}) = \pi^n_{v,v'}$ for any $n \in \mathbb{N}$ and any $(v,v') \in \mathsf{E}_{k_n}!$

⁷This is directly obtained by considering branching processes with deterministic time steps.

M. Noble, V. de Bortoli, A. Doucet, A. Durmus 16 / 30

Introduction to TreeDSB Tree-based IPF procedure

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ ・ クタペ

TreeDSB methodology

In our setting, we consider $2 |\mathsf{E}|$ neural networks to approximate the scores on each edge (forward/backward). Then, our methodology locally acts as DSB.

Introduction to TreeDSB Tree-based IPF procedure

TreeDSB methodology

In our setting, we consider $2 |\mathsf{E}|$ neural networks to approximate the scores on each edge (forward/backward). Then, our methodology locally acts as DSB.

Let $n \in \mathbb{N}$. Assume that we have computed \mathbb{P}^n and want to compute \mathbb{P}^{n+1} . Consider the path $\mathsf{P} = \operatorname{path}_{\mathsf{T}_{k_n}}(i_{k_n}, i_{k_n+1})$. Then, for any $(v', v) \in \mathsf{P}$:

(1) approximately sample from $\mathbb{P}^n_{(v',v)}$ using E.-M. time discretization,

(2) compute an *approximation* of $(\mathbb{P}^n_{(v',v)})^R$ with these samples, using the score-matching technique from De Bortoli et al. (2021).

Application to Wasserstein barycenters

イロト イポト イヨト イヨト

悪

Outline

2 TreeDSB Algorithm

3 A little bit of theory

• Application to Wasserstein barycenters

4 Numerical experiments

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のので

Assume that T is a star-shaped tree and $S = \{1, \dots, \ell\}$. Let $\varepsilon > 0$.

We recall the definition of the entropy-regularized Wasserstein-2 distance

 $W_{2,\varepsilon}^{2}(\mu,\nu) = \inf\{\int \|x_{1} - x_{0}\|^{2} \mathrm{d}\pi(x_{0},x_{1}) - \varepsilon \mathrm{H}(\pi) : \pi \in \mathscr{P}^{(2)}, \pi_{0} = \mu, \pi_{1} = \nu\}$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のので

Assume that T is a star-shaped tree and $S = \{1, ..., \ell\}$. Let $\varepsilon > 0$.

We recall the definition of the entropy-regularized Wasserstein-2 distance

$$W_{2,\varepsilon}^{2}(\mu,\nu) = \inf\{\int \|x_{1} - x_{0}\|^{2} \mathrm{d}\pi(x_{0},x_{1}) - \varepsilon \mathrm{H}(\pi) : \pi \in \mathscr{P}^{(2)}, \pi_{0} = \mu, \pi_{1} = \nu\}$$

We consider the doubly-reg. Wasserstein-2 barycenter problem (regWB)

 $\mu_{\varepsilon}^{\star} = \arg\min\{\sum_{i=1}^{\ell} w_i W_{2,\varepsilon/w_i}^2(\mu,\mu_i) + \ell \varepsilon \mathrm{H}(\mu) + \varepsilon \mathrm{KL}(\mu|\mu_0) : \mu \in \mathscr{P}(\mathbb{R}^d)\},\$

where $(w_i)_{i \in \{1,...,\ell\}} \in (0,+\infty)^{\ell}$ and $\mu_0 \in \mathscr{P}(\mathbb{R}^d)$ is a reference measure.

Assume that T is a star-shaped tree and $S = \{1, \ldots, \ell\}$. Let $\varepsilon > 0$.

We recall the definition of the entropy-regularized Wasserstein-2 distance

$$W^2_{2,\varepsilon}(\mu,\nu) = \inf\{\int \|x_1 - x_0\|^2 \mathrm{d}\pi(x_0, x_1) - \varepsilon \mathrm{H}(\pi) : \pi \in \mathscr{P}^{(2)}, \pi_0 = \mu, \pi_1 = \nu\}$$

We consider the doubly-reg. Wasserstein-2 barycenter problem (regWB)

$$\mu_{\varepsilon}^{\star} = \arg\min\{\sum_{i=1}^{\ell} w_i W_{2,\varepsilon/w_i}^2(\mu,\mu_i) + \ell \varepsilon \mathrm{H}(\mu) + \varepsilon \mathrm{KL}(\mu|\mu_0) : \mu \in \mathscr{P}(\mathbb{R}^d)\},\$$

where $(w_i)_{i \in \{1,...,\ell\}} \in (0,+\infty)^\ell$ and $\mu_0 \in \mathscr{P}(\mathbb{R}^d)$ is a reference measure.

Proposition 2

Let $\mu_0 \in \mathscr{P}$ such that $\mu_0 \ll \text{Leb}$. Assume that r = 0 and $\varphi_r = d\mu_0/d\text{Leb} > 0$ in **TreeSB**. Also assume that **TreeSB** admits a feasible solution. Then **regWB** has a **unique solution** π_0^* , where π^* is the unique solution to **TreeSB**.

More generally, **TreeSB** is equivalent to a **doubly-regularized formulation of the Wasserstein propagation** problem !

Framework Results

イロン イ理 とくほとう

唐 のへで

Outline

- Motivations and background
- 2 TreeDSB Algorithm
- 3 A little bit of theory

4 Numerical experiments

- Framework
- Results

Framework Results

We compute Wasserstein Barycenters between K = 3 probability distributions.

We compare TreeDSB with two state-of-the-art regularized OT methods:

- free-support Wasserstein barycenter (fsWB) (Cuturi and Doucet, 2014)
- continuous regularized Wasserstein barycenter (crWB) (Li et al., 2020)

TreeDSB setting⁸:

- $T_{v,v'}=K {\ensuremath{\varepsilon}}/2$ for any $\{v,v'\}\in {\sf E},$
- μ_0 is a well-chosen Gaussian distribution,
- 50 timesteps in the SDE time discretization,
- the order of the leaves is randomly shuffled between mIPF cycles.

https://github.com/maxencenoble/tree-diffusion-schrodinger-bridge

⁸Further details on the implementation are provided in the paper: < 🗇 > < 🖘 > < 🕸 > 🕫 - < <

Framework Results

Synthetic 2D datasets (1/3)

<u>Parameters</u>: $\varepsilon = 0.2$ (T = 0.3), 20 mIPF cycles.

Figure: From left to right: estimated densities (*upper*) and estimated barycenter (*bottom*) for Swiss-roll, circle and moons.

æ

イロト イポト イヨト イヨト

Framework Results

Synthetic 2D datasets (2/3)

<u>Parameters</u>: $\varepsilon = 0.1$ (T = 0.15), 20 mIPF cycles.

Figure: From left to right: estimated densities (*upper*) and estimated barycenter (*bottom*) for Swiss-roll, circle and moons.

イロン イボン イヨン イヨン

悪

Framework Results

Synthetic 2D datasets (3/3)

Parameters: $\varepsilon = 0.05$ (T = 0.075), 35 mIPF cycles.

Figure: From left to right: estimated densities (*upper*) and estimated barycenter (*bottom*) for Swiss-roll, circle and moons.

イロン イボン イヨン イヨン

悪

Framework Results

MNIST datasets (1/3)

Parameters: $\varepsilon = 0.5$ (T = 0.5), 5 mIPF cycles.

00	O C	0	с. 1
OC	00	0	$\langle 0 \rangle$
OD	00	0	\$
00	00	0	Ø
00	00	0	3

1	$\langle \! D \rangle$	(l)	Ф	1
		1	Ф	
0	1	Ą)	Ø	1
1	1	(0)	1	1
2	Ф	1	0	1

Figure: Reconstructed measures and regularized Wasserstein barycenter obtained from MNIST digits 0 (*left*) and 1 (*right*).

Φ	Ø	()	1	0
Ø	Ø	Ø	Ø	Ø
Φ	Ø	Q	Ø	Ф
Ø	Ф	Φ	0	0
0	0	Ø	P	0

イロン イボン イヨン イヨン

Figure: From left to right: 0-1 Wasserstein barycenter obtained from Fan et al. (2020) (*non-regularized*), Korotin et al. (2021) (*non-regularized*), Li et al. (2020).

Framework Results

MNIST datasets (2/3)

Parameters: $\varepsilon = 0.5$ (T = 0.75), 5 mIPF cycles.

2	3	2	a	2	4	4	4	4	ч	6	\oslash	6	6	6
2	2	2	2	٢	Ч	4	4	4	4	6	6	6	6	6
2	a	a	3	2	4	4	4	4	4	К	6	6	6	6
2	3	3	9	2	4	4	1	¥	H	6	6	6	6	6
2	2	2	J	3	Ч	4	4	¥	4	6	6	6	6	6
Z	8	\mathcal{L}	6	6	6	Ś	6	3	6	G	6	6	8	4
4	l	ć	6	6	e	6	6	ć	V	2	6	L	4	6
6	6	\mathcal{G}	6	6	6		6	8	6	4	6	6	é	9
	1	6	4	6	6	N.	6	6	5	3	6	6	6	6
	c	1	6	4	6	6	4	6	3	6	6	6	6	\mathcal{C}

Figure: From left to right: estimated samples (*upper*) and estimated regularized Wasserstein barycenter samples (*bottom*) for MNIST digits 2,4 and 6.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

Framework Results

MNIST datasets (3/3)

Parameters: $\varepsilon = 0.5$ (T = 0.75), 5 mIPF cycles.

Figure: From left to right: estimated samples (*upper*) and estimated regularized Wasserstein barycenter samples (*bottom*) for MNIST digits 0,1 and 4.

イロト 不得 とくきとくきとう き

Framework Results

Subset posterior aggregation

<u>Data</u>: Bayesian posterior distributions from a logistic regression model evaluated on a partition of wine⁹ dataset (d = 42) between 3 subdatasets (splitted with & without heterogeneity according to the output).

In theory, the non-regularized Wasserstein barycenter should match the *full* data Bayesian posterior distribution (Srivastava et al., 2018).

Parameters: $\varepsilon = 0.2$ (T = 0.3), 10 mIPF cycles.

Evaluation with the **Bures-Wasserstein Unexplained Variance Percentage** (Korotin et al., 2021) between the estimate $\hat{\mu}$ and the full-data posterior μ^*

 $BW_2^2 - UVP(\hat{\mu}, \mu^*) \propto W_2^2(N(\mathbb{E}[\hat{\mu}], Cov(\hat{\mu})), N(\mathbb{E}[\mu^*], Cov(\mu^*))).$

Method	Without heterogeneity	With heterogeneity
fsWB crWB TreeDSB	$\begin{array}{c} 12.95 _{\pm 0.35} \\ 20.66 _{\pm 0.71} \\ 8.69 _{\pm 0.12} \end{array}$	$\begin{array}{c} 14.43_{\pm 0.51} \\ 23.06_{\pm 0.12} \\ \textbf{8.90}_{\pm 0.68} \end{array}$

Framework Results

Conclusion

Maxence Noble, Valentin de Bortoli, Arnaud Doucet, Alain Durmus (arxiv preprint, 2023). Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters.

- We introduce **TreeDSB**, a scalable scheme to approximate solutions of **entropy-regularized multimarginal OT** problems defined on general **trees**.
- We prove the **convergence** of this algorithm under mild assumptions.
- We illustrate the efficiency of TreeDSB to compute Wasserstein barycenters in several tasks (vision, Bayesian fusion).

Computational limits:

- TreeDSB is unstable when ε , equivalently T, is too low (common EOT limit),
- Bias (discretization/learning) is accumulated along the iterations,
- TreeDSB is not adapted for a large number of leaves.

Future work:

- Provide quantitative convergence bounds for mIPF,
- Rely on recent developments from the flow matching community (Lipman et al., 2023; Peluchetti, 2023; Shi et al., 2023).

Framework Results

Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters

Maxence Noble¹ Valentin de Bortoli² Arnaud Doucet³ Alain Durmus¹

¹Centre de Mathématiques Appliquées, Ecole Polytechnique Institut Polytechnique de Paris, France

²Département d'Informatique, École Normale Supérieure CNRS. Université PSL. Paris. France

³Department of Statistics, University of Oxford, UK

-∢ ≣ →

3

Motivations and background	
TreeDSB Algorithm	Framew
A little bit of theory	Results
Numerical experiments	

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative Bregman projections for regularized transportation problems. *SIAM Journal on Scientific Computing*, 37(2):A1111–A1138, 2015.

1ework

- Patrick Cattiaux, Giovanni Conforti, Ivan Gentil, and Christian Léonard. Time reversal of diffusion processes under a finite entropy condition. *arXiv preprint arXiv:2104.07708*, 2021.
- Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26, 2013.
- Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein barycenters. In *International conference on machine learning*, pages 685–693. PMLR, 2014.
- Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger bridge with applications to score-based generative modeling. *Advances in Neural Information Processing Systems*, 34:17695–17709, 2021.
- Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen. Scalable computations of Wasserstein barycenter via input convex neural networks. *arXiv preprint arXiv:2007.04462*, 2020.
- Isabel Haasler, Axel Ringh, Yongxin Chen, and Johan Karlsson. Multimarginal optimal transport with a tree-structured cost and the Schrödinger bridge problem. SIAM Journal on Control and Optimization, 59(4):2428–2453, 2021.
- Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. *The Annals of Probability*, pages 1188–1205, 1986.
- Leonid V Kantorovich. On the translocation of masses. In *Dokl. Akad. Nauk. USSR (NS)*, volume 37, pages 199–201, 1942.
- Philip A Knight. The Sinkhorn–Knopp algorithm: convergence and applications. SIAM Journal on Matrix Analysis and Applications, 30(1):261–275, 2008.

3

Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev. Continuous Wasserstein-2 barycenter estimation without minimax optimization. *arXiv preprint arXiv:2102.01752*, 2021.

- Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete & Continuous Dynamical Systems-A, 34(4):1533-1574, 2014.
- Lingxiao Li, Aude Genevay, Mikhail Yurochkin, and Justin M Solomon. Continuous regularized Wasserstein barycenters. *Advances in Neural Information Processing Systems*, 33: 17755–17765, 2020.
- Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *International Conference on Learning Representations*, 2023.
- Ofir Pele and Michael Werman. Fast and robust earth mover's distances. In 2009 IEEE 12th International Conference on Computer Vision, pages 460–467. IEEE, 2009.
- Stefano Peluchetti. Diffusion bridge mixture transports, Schrödinger bridge problems and generative modeling. *arXiv preprint arXiv:2304.00917*, 2023.
- Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.
- Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger bridge matching. *arXiv preprint arXiv:2303.16852*, 2023.
- Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific Journal of Mathematics*, 21(2):343–348, 1967.
- Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher. Wasserstein propagation for semi-supervised learning. In *International Conference on Machine Learning*, pages 306–314. PMLR, 2014.
- Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Transactions on Graphics (ToG), 34(4): 1–11, 2015.
- Sanvesh Srivastava, Cheng Li, and David B Dunson. Scalable Bayes via barycenter in Wasserstein space. The Journal of Machine Learning Research, 19(1):312-346, 2018.