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Motivations of Optimal transport

Probability distributions are everywhere in machine learning.

Figure: From left to right: Bayesian posterior distribution (supported on Rd), MNIST
(supported on [0, 1]28×28) and CELEBA (supported on [0, 1]3×64×64).

• How to compare distributions ?

• How to evaluate similarity between distributions ?

• How to define a proper geometry in the space of distributions ?

Optimal transport (OT) provides tools to answer this question!
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Formulation from Kantorovich (1942)
Define P(2) as the set of probability measures defined on Rd × Rd.

Given a cost function c : Rd × Rd → R and µ0, µ1 ∈ P(Rd), we aim at solving

π⋆ = argmin
{∫

c(x0, x1)dπ(x0, x1) : π ∈ P(2), π0 = µ0, π1 = µ1

}

• With a quadratic cost:
we obtain the Wasserstein-2 distance between µ0 and µ1

W2(µ0, µ1) = inf
{∫

∥x0 − x1∥2dπ(x0, x1) : π ∈ P(2), π0 = µ0, π1 = µ1

}1/2

Figure: Illustration from the slides of Rémi Flamary.
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Extension to the multimarginal setting

Define P(ℓ+1) as the set of probability measures defined on (Rd)ℓ+1.

Given a cost function c : (Rd)ℓ+1 → R, a subset S ⊂ {0, . . . , ℓ} and a family of
probability measures {µi}i∈S ∈ (P(Rd))|S|, we consider the mOT problem

π⋆ = argmin
{∫

c(x0:ℓ)dπ(x0:ℓ) : π ∈ P(ℓ+1), πi = µi ,∀i ∈ S
}

• If c(x0:ℓ) =
∑ℓ

i=1 wi∥x0 − xi∥2 with {wi} ∈ (R+)
|S| and S = {1, . . . , ℓ} :

π⋆
0 = argmin

{∑ℓ
i=1 wiW

2
2 (ν, µi) : ν ∈ P(Rd)

}
,

mOT defines the Wasserstein barycenter (Peyré et al., 2019) of the {µi}.

Figure: Illustration from Solomon et al. (2015).
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Tree-based OT
Consider an undirected tree (connected acyclic graph) T = (V,E) with vertices
V (identified with {0, . . . , ℓ}), edges E and edge weights {wv,v′} ∈ (R+)

|E|.

Figure: Illustration from Solomon et al. (2015).

By defining a quadratic tree-based cost (Haasler et al., 2021)

c(x0:ℓ) =
∑

{v,v′}∈E wv,v′∥xv − xv′∥2 ,

mOT recovers the Wasserstein propagation problem (Solomon et al., 2014)

argmin
{∑

{v,v′}∈E wv,v′W 2
2 (νv, νv′) : {νv} ∈ (P(Rd))|V|, νv = µv, ∀v ∈ S

}
.

It reduces to a Wasserstein barycenter problem when T is a star-shaped tree !

M. Noble, V. de Bortoli, A. Doucet, A. Durmus
Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters
7 / 30



Motivations and background
TreeDSB Algorithm
A little bit of theory

Numerical experiments

Optimal Transport and extensions
Link with Schrödinger Bridge
Our framework

Tree-based OT
Consider an undirected tree (connected acyclic graph) T = (V,E) with vertices
V (identified with {0, . . . , ℓ}), edges E and edge weights {wv,v′} ∈ (R+)

|E|.

Figure: Illustration from Solomon et al. (2015).

By defining a quadratic tree-based cost (Haasler et al., 2021)

c(x0:ℓ) =
∑

{v,v′}∈E wv,v′∥xv − xv′∥2 ,

mOT recovers the Wasserstein propagation problem (Solomon et al., 2014)

argmin
{∑

{v,v′}∈E wv,v′W 2
2 (νv, νv′) : {νv} ∈ (P(Rd))|V|, νv = µv, ∀v ∈ S

}
.

It reduces to a Wasserstein barycenter problem when T is a star-shaped tree !
M. Noble, V. de Bortoli, A. Doucet, A. Durmus

Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters
7 / 30



Motivations and background
TreeDSB Algorithm
A little bit of theory

Numerical experiments

Optimal Transport and extensions
Link with Schrödinger Bridge
Our framework

Entropy-regularized OT (EOT)

Solving OT problems faces computational challenges in practice (Pele and
Werman, 2009), which motivates to consider an entropic regularization of OT.

In the multimarginal setting, we now aim to solve the EmOT problem

π⋆ = argmin
{∫

c(x0:ℓ)dπ(x0:ℓ) + εKL(π|ν) : π ∈ P(ℓ+1), πi = µi , ∀i ∈ S
}

• ε > 0: regularization hyperparameter.

• ν ∈ P(ℓ+1): regularization probability measure.

• KL(π|ν)1: Kullback-Leibler divergence between π and ν.

The discrete state-space counterpart of EmOT can be efficiently solved with
Sinkhorn algorithm (Cuturi, 2013; Knight, 2008; Sinkhorn and Knopp, 1967).

Figure: Illustration from Solomon et al. (2015).

1KL(π|ν) =
∫
log(dπ/dν)dπ if π ≪ ν, KL(π|ν) = ∞ otherwise.
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Schrödinger Bridge Problem

Given a time horizon T > 0, a reference path measure Q and µ0, µ1 ∈ P(Rd),
the dynamic Schrödinger Bridge (SB) problem amounts to find

P⋆ = argmin{KL(P|Q) : P ∈ P(C([0, T ] ,Rd)), P0 = µ0, PT = µ1}

If Q is associated with the SDE2 dXt = −aXtdt+ dBt, with a ≥ 0, Léonard
(2014) states that P⋆

0,T solves the static-SB problem

argmin{KL(π|Q0,T ) : π ∈ P(2), π0 = µ0, π1 = µ1} ,

and we have

static-SB ⇐⇒ EOT with ε = 2 sinh(aT )/a if a > 0 or ε = 2T if a = 0 .

Moreover, we have

static-SB ⇐⇒ SB , since P⋆ = P⋆
0,T ⊗Q|0,T .

2Stochastic Differential Equation
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Iterative Proportional Fitting (IPF) procedure

The IPF procedure3 (Sinkhorn and Knopp, 1967; Knight, 2008; Peyré et al.,
2019; Cuturi and Doucet, 2014) aims at solving SB with the iterates (Pn)n∈N
defined by P0 = Q and for any n ∈ N

P2n+1 = argmin{KL(P|P2n) : PT = µ1},

= µ1 ⊗ (P2n)R|0 (backward) ,

P2n+2 = argmin{KL(P|P2n+1) : P0 = µ0}

= µ0 ⊗ P2n+1
|0 (forward) ,

where R is the time-reversal operator.

If P is associated with dXt = ft(Xt)dt+ dBt, then under mild assumptions
(Haussmann and Pardoux, 1986; Cattiaux et al., 2021), PR is associated with

dYt = {−fT−t(Yt) +∇ log pT−t(Yt)}dt+ dBt,

where pt is the density of Pt w.r.t. the Lebesgue measure.

3Note that it is the continuous state-space counterpart of Sinkhorn algorithm.
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Diffusion Schrödinger Bridge (DSB)

De Bortoli et al. (2021) propose a numerical scheme4, Diffusion Schrödinger
Bridge, to approximate the IPF iterates by implementing

• an Euler-Maruyama time discretization of the forward/backward SDEs,

• an approximation of the scores via 2 neural networks (forward/backward).

Figure: Illustration from De Bortoli et al. (2021).

4This algorithm shows great performance for small values of T .
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Extension of EmOT to SB formulation

We recall the regularized OT formulation in the multimarginal setting (EmOT)

π⋆ = argmin
{∫

c(x0:ℓ)dπ(x0:ℓ) + εKL(π|ν) : π ∈ P(ℓ+1), πi = µi , ∀i ∈ S
}
.

If ν ≪ Leb, then EmOT can be rewritten in a static-SB fashion, called mSB

π⋆ = argmin{KL(π|π0) : π ∈ P(ℓ+1), πi = µi ,∀i ∈ S},

with (dπ0/dLeb)(x0:ℓ) ∝ exp[−c(x0:ℓ)/ε](dν/dLeb)(x0:ℓ)
5.

Similarly to the bimarginal setting, we obtain

EmOT param. by c, ε and ν ⇐⇒ mSB param. by π0 .

5Note that π0 may not be a probability measure.
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Formulation of Tree-based SB

Consider an undirected tree T = (V,E) with V ≡ {0, . . . , ℓ} and assume that

• S is the set of the leaves of T,

• c(x0:ℓ) =
∑

{v,v′}∈E wv,v′∥xv − xv′∥22,
• dν/dLeb(x0:ℓ) = φr(xr) for some r ∈ V.

Then, π0 ∈ P(Rd) has a Markovian factorization along Tr = (V,Er), the
directed version of T rooted in r,

π0 = π0
r

⊗
(v,v′)∈Er

π0
v′|v,

where π0
v′|v(· | xv) = N(xv, ε/(2wv,v′)Id) and π0

r ≪ Leb with density φr.

We finally obtain a tree-based formulation of the mSB problem (TreeSB)

π⋆ = argmin{KL(π|π0) : π ∈ P(|V|), πi = µi, ∀i ∈ S}

with π0 param. by r and φr,

and propose to solve it with our algorithm Tree-Based Diffusion Schrödinger
Bridge (TreeDSB), which is the natural extension of DSB.
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Before starting

Some notation:

• S = {i0, . . . , iK−1}, and thus |S| = K.

• kn = (n− 1) mod(K), kn + 1 = n mod(K).

• Tv,v′ = ε/(2wv,v′) for any {v, v′} ∈ E.

• Ext(P) = P0,T ∈ P(2) for any path measure P ∈ P(C([0, T ],Rd)).

We make the following assumptions:
• µi ≪ Leb for any i ∈ S,

• r ∈ S (optional),

• φr = dµiK−1/dLeb (optional).

In practice:
• r may be chosen in V\S (only the first iteration of TreeDSB differs),

• if r ∈ S, the choice of φr does not change the solutions of TreeSB6.

6See Proposition 4.2. in Peyré et al. (2019).
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Introduction to TreeDSB
Tree-based IPF procedure

Relying on Benamou et al. (2015), the extension of the static IPF procedure in
the multimarginal setting (mIPF) is given by

πn+1 = argmin{KL(π|πn) : π ∈ P(|V|), πikn+1 = µikn+1},

In the tree-based setting, we prove that the dynamic version of mIPF7

amounts to recursively define path measures {Pn
(v,v′)}n∈N,(v,v′)∈Ekn

as follows.

Proposition 1

• At step n = 0: P0
(v,v′)|0 ∼ (Bt)t∈[0,Tv,v′ ] for

any (v, v′) ∈ Ek0 and P0
(r,·),0 = π0

r .

• At step n+ 1: consider Tkn+1 = (V,Ekn+1)
rooted in ikn+1 and P = pathTkn

(ikn , ikn+1).
Let (v, v′) ∈ Ekn+1.
▶ If (v, v′) ∈ Ekn\P: Pn+1

(v,v′) = πn+1
v ⊗Pn

(v,v′)|0.
▶ If (v′, v) ∈ P: Pn+1

(v,v′) = πn+1
v ⊗ (Pn

(v′,v))
R

|0.

We get that Ext(Pn
(v,v′)) = πn

v,v′ for any n ∈ N and any (v, v′) ∈ Ekn !

7This is directly obtained by considering branching processes with deterministic time steps.
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TreeDSB methodology

In our setting, we consider 2 |E| neural networks to approximate the scores on
each edge (forward/backward). Then, our methodology locally acts as DSB.

Let n ∈ N. Assume that we have computed Pn and want to compute Pn+1.
Consider the path P = pathTkn

(ikn , ikn+1). Then, for any (v′, v) ∈ P:

(1) approximately sample from Pn
(v′,v) using E.-M. time discretization,

(2) compute an approximation of (Pn
(v′,v))

R with these samples, using the
score-matching technique from De Bortoli et al. (2021).

Figure: Illustration of a TreeDSB cycle over a star-shaped tree with 3 leaves.
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Application to Wasserstein barycenters

Assume that T is a star-shaped tree and S = {1, . . . , ℓ}. Let ε > 0.

We recall the definition of the entropy-regularized Wasserstein-2 distance

W 2
2,ε(µ, ν) = inf{

∫
∥x1 − x0∥2dπ(x0, x1)− εH(π) : π ∈ P(2), π0 = µ, π1 = ν}

We consider the doubly-reg. Wasserstein-2 barycenter problem (regWB)

µ⋆
ε = argmin{

∑ℓ
i=1 wiW

2
2,ε/wi

(µ, µi) + ℓεH(µ) + εKL(µ|µ0) : µ ∈ P(Rd)} ,

where (wi)i∈{1,...,ℓ} ∈ (0,+∞)ℓ and µ0 ∈ P(Rd) is a reference measure.

Proposition 2

Let µ0 ∈ P such that µ0 ≪ Leb. Assume that r = 0 and φr = dµ0/dLeb > 0
in TreeSB. Also assume that TreeSB admits a feasible solution. Then regWB
has a unique solution π⋆

0 , where π⋆ is the unique solution to TreeSB.

More generally, TreeSB is equivalent to a doubly-regularized formulation of
the Wasserstein propagation problem !
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We compute Wasserstein Barycenters between K = 3 probability distributions.

We compare TreeDSB with two state-of-the-art regularized OT methods:
• free-support Wasserstein barycenter (fsWB) (Cuturi and Doucet, 2014)

• continuous regularized Wasserstein barycenter (crWB) (Li et al., 2020)

TreeDSB setting8:

• Tv,v′ = Kε/2 for any {v, v′} ∈ E,

• µ0 is a well-chosen Gaussian distribution,

• 50 timesteps in the SDE time discretization,

• the order of the leaves is randomly shuffled between mIPF cycles.

https://github.com/maxencenoble/tree-diffusion-schrodinger-bridge

8Further details on the implementation are provided in the paper.
M. Noble, V. de Bortoli, A. Doucet, A. Durmus
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Synthetic 2D datasets (1/3)

Parameters: ε = 0.2 (T = 0.3), 20 mIPF cycles.

Figure: From left to right: estimated densities (upper) and estimated barycenter
(bottom) for Swiss-roll, circle and moons.
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Synthetic 2D datasets (2/3)

Parameters: ε = 0.1 (T = 0.15), 20 mIPF cycles.

Figure: From left to right: estimated densities (upper) and estimated barycenter
(bottom) for Swiss-roll, circle and moons.
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Synthetic 2D datasets (3/3)

Parameters: ε = 0.05 (T = 0.075), 35 mIPF cycles.

Figure: From left to right: estimated densities (upper) and estimated barycenter
(bottom) for Swiss-roll, circle and moons.
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MNIST datasets (1/3)

Parameters: ε = 0.5 (T = 0.5), 5 mIPF cycles.

Figure: Reconstructed measures and regularized Wasserstein barycenter obtained from
MNIST digits 0 (left) and 1 (right).

Figure: From left to right: 0-1 Wasserstein barycenter obtained from Fan et al. (2020)
(non-regularized), Korotin et al. (2021) (non-regularized), Li et al. (2020).
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MNIST datasets (2/3)

Parameters: ε = 0.5 (T = 0.75), 5 mIPF cycles.

Figure: From left to right: estimated samples (upper) and estimated regularized
Wasserstein barycenter samples (bottom) for MNIST digits 2,4 and 6.
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MNIST datasets (3/3)

Parameters: ε = 0.5 (T = 0.75), 5 mIPF cycles.

Figure: From left to right: estimated samples (upper) and estimated regularized
Wasserstein barycenter samples (bottom) for MNIST digits 0,1 and 4.
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Subset posterior aggregation

Data: Bayesian posterior distributions from a logistic regression model
evaluated on a partition of wine9 dataset (d = 42) between 3 subdatasets
(splitted with & without heterogeneity according to the output).

In theory, the non-regularized Wasserstein barycenter should match the full
data Bayesian posterior distribution (Srivastava et al., 2018).

Parameters: ε = 0.2 (T = 0.3), 10 mIPF cycles.

Evaluation with the Bures-Wasserstein Unexplained Variance Percentage
(Korotin et al., 2021) between the estimate µ̂ and the full-data posterior µ⋆

BW2
2-UVP(µ̂, µ⋆) ∝ W 2

2 (N(E[µ̂],Cov(µ̂)),N(E[µ⋆],Cov(µ⋆)) .

Method Without heterogeneity With heterogeneity

fsWB 12.95±0.35 14.43±0.51

crWB 20.66±0.71 23.06±0.12

TreeDSB 8.69±0.12 8.90±0.68
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Conclusion
Maxence Noble, Valentin de Bortoli, Arnaud Doucet, Alain Durmus (arxiv
preprint, 2023). Tree-Based Diffusion Schrödinger Bridge with Applications to
Wasserstein Barycenters.

• We introduce TreeDSB, a scalable scheme to approximate solutions of
entropy-regularized multimarginal OT problems defined on general trees.

• We prove the convergence of this algorithm under mild assumptions.
• We illustrate the efficiency of TreeDSB to compute Wasserstein

barycenters in several tasks (vision, Bayesian fusion).
Computational limits:

• TreeDSB is unstable when ε, equivalently T , is too low (common EOT
limit),

• Bias (discretization/learning) is accumulated along the iterations,
• TreeDSB is not adapted for a large number of leaves.

Future work:
• Provide quantitative convergence bounds for mIPF,
• Rely on recent developments from the flow matching community (Lipman

et al., 2023; Peluchetti, 2023; Shi et al., 2023).
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