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Constrained sampling

• Consider a subset M ⊂ Rd.

• Our goal: sample from a target distribution π supported on M and known
up to a normalising constant Z

dπ(x)/dx = exp[−V (x)]/Z , V ∈ C2(M,R) .

➔ When M = Rd, gradient-based Markov Chain Monte Carlo (MCMC)
methods are very popular and come with some theoretical guarantees under
assumptions on V (Duane et al., 1987; Roberts and Tweedie, 1996).

➔ However, their extension to constrained sampling still faces challenges
(Gelfand et al., 1992; Pakman and Paninski, 2014; Lan and Shahbaba, 2015).
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About MCMC methods

Traditional MCMC approaches for constrained sampling suffer from poor
mixing times if M or V have a sharp geometry, including

• Hit-and-Run (Lovász and Vempala, 2004),

• Ball Walk (Lee and Vempala, 2017b) (left),

• Hamiltonian Monte Carlo (HMC) (Duane
et al., 1987) (right).

This fact motivates to directly incorporate the geometric constraints into the
sampling algorithms.

• If M = {x ∈ Rd : c(x) = 0}: HMC + RATTLE integrator (Leimkuhler
and Skeel, 1994; Brubaker et al., 2012).

• If (M, g) is Riemannian submanifold: Riemannian Manifold HMC
(RMHMC) (Girolami and Calderhead, 2011).
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Basics of RMHMC

Assume M (e.g., open) is a d-dimensional submanifold of Rd, endowed with
some Riemannian metric g.

Results on (M, g) (see Lee (2006) and Mok (1977) for details):

• Volume element on M: dvolM(x) =
√

det g(x)dx.

• T⋆
xM: cotangent space at x ∈ M

→ T⋆
xM ≡ Rd, endowed with the scalar product ⟨·, ·⟩g(x)−1

→ Standard Gaussian distr. w.r.t. ∥ · ∥g(x)−1 : Nx(0, Id) ≡ N(0, g(x))

• T⋆M: cotangent bundle of M, defined by T⋆M = ⊔x∈M{x} ∪ T⋆
xM

→ 2d-dim. submanifold which may be endowed with a specific metric
g⋆ inherited from g which verifies

dvolT⋆M(x, p) =
√

det g⋆(x, p)dxdp = dxdp
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some Riemannian metric g.

➔ Results on (M, g) (see Lee (2006) and Mok (1977) for details):

• Volume element on M: dvolM(x) =
√

det g(x)dx.
• Volume element on T⋆M: dvolT⋆M(x, p) =

√
det g⋆(x, p)dxdp = dxdp.

➔ In terms of probability distributions:

• Target measure: dπ(x)/dvolM(x) = exp[−V (x)− 1
2
log(det g(x))]/Z.

• Hamiltonian on T⋆M : H(x, p)
def
= V (x) + 1

2
log (det g(x)) + 1

2
∥p∥2g(x)−1 .

RMHMC aims at sampling from the augmented target distribution π̄ on T⋆M

dπ̄(x, p)
def
= dπ(x)Nx(p; 0, Id)dp ∝ exp[−H(x, p)]dvolT⋆M(x, p) .

If g(x) = Id, we recover the setting of “Euclidean“ HMC !
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Definition of the Hamiltonian dynamics

HMC Ham. on R2d : H(x, p) = V (x) + 1
2
∥p∥22.

RMHMC Ham. on T⋆M : H(x, p) = V (x) + 1
2
log (det g(x)) + 1

2
∥p∥2g(x)−1 .

The Hamiltonian dynamics associated with H is given by the following ODEs

ẋt = ∂pH(xt, pt) , ṗt = −∂xH(xt, pt) . (1)

The corresponding flow is denoted by Ψ : t, (x0, p0) 7→ (xt, pt).

➔ Conservation of the Hamiltonian through time.

➔ Volume preservation through time: the flow Ψ is symplectic.

➔ Time-reversibility: Ψ−1
t = s ◦Ψt ◦ s where s(x, p) = (x,−p).

In particular, s ◦Ψt is an involution.

HMC : ẋ = pt , ṗt = −∇V (xt).

RMHMC : ẋt = g(xt)
−1pt , ṗt = −∇V (xt) + L(xt) .

where L(x) = − 1
2
g(x)−1 : Dg(x) + 1

2
Dg(x)[ẋ, ẋ]. The Riemannian metric g is

incorporated into the dynamics, but this dynamics is more complex to solve...
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RMHMC : ẋt = g(xt)
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Description of RMHMC (Girolami and Calderhead, 2011)
We recall that the target distribution on T⋆M is given by

dπ̄(x, p)
def
= dπ(x)Nx(p; 0, Id)dp ∝ exp[−H(x, p)]dvolT⋆M(x, p) .

RMHMC builds a Markov chain (xn, pn)n∈N via a Gibbs-based scheme.
For any n ≥ 1, given (xn−1, pn−1) ∈ T⋆M, we sample

(1) pn ∼ Nxn−1(0, Id)dp ,

(2) xn ∼ dπ̄(xn|pn) ∝ exp[−H(xn, pn)]dvolM(xn) .

Step (2) in theory: we want to compute a Markov kernel that leaves π̄(·|pn)
invariant on M. Denote z = (xn−1, pn) and define
• A proposal distribution dqz(z

′) which preserves volume.

• The acceptance ratio a(z → z′) = min
(
1,

π̄(z′)qz′ (z)
π̄(z)qz(z′)

)
.

Step (2) in practice:
(a) Sample z′ ∼ qz and U ∼ U [0, 1].
(b) If U ≤ a, set z⋆ = z′ (accepted); otherwise, set z⋆ = z (rejected).

This is a Metropolis-Hastings Markov kernel dQz(z
⋆): π̄-reversible.

=⇒ (projx)#Qz leaves π̄(·|pn) invariant !
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Description of RMHMC (Girolami and Calderhead, 2011)
In most cases, qz is chosen stochastic. In RMHMC, qz is deterministic, defined
by a map F : T⋆M → T⋆M, i.e., dqz(z′) = dδF(z)(z

′).

Ideal setting: we choose F = s ◦Ψt for some t > 0. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• π(z′) = π(z) by conservation of the Hamiltonian.

In this case, a(z → z′) = 1; we just have to follow the Hamiltonian flow !
However, F cannot be computed exactly...

Let h > 0 be a step-size. Consider Th ≈ Ψh a numerical integrator such that
Th is symplectic and s ◦ Th is involutive (Th is said to be reversible).

Realistic setting: we choose F = s ◦ Th. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• However, π(z′) ̸= π(z) due to ODE integration error.

In this case, the acceptance ratio simplifies as

a(z → z′) = min

(
1,

exp(−H(z′)

exp(H(z))

)
.

Maxence Noble
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
10 / 34



Motivations and background
Description of BHMC

Results
Conclusion

General setting
RMHMC: basics and challenges
Summary of the motivations and assumptions

Description of RMHMC (Girolami and Calderhead, 2011)
In most cases, qz is chosen stochastic. In RMHMC, qz is deterministic, defined
by a map F : T⋆M → T⋆M, i.e., dqz(z′) = dδF(z)(z

′).

Ideal setting: we choose F = s ◦Ψt for some t > 0. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• π(z′) = π(z) by conservation of the Hamiltonian.

In this case, a(z → z′) = 1; we just have to follow the Hamiltonian flow !
However, F cannot be computed exactly...

Let h > 0 be a step-size. Consider Th ≈ Ψh a numerical integrator such that
Th is symplectic and s ◦ Th is involutive (Th is said to be reversible).

Realistic setting: we choose F = s ◦ Th. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• However, π(z′) ̸= π(z) due to ODE integration error.

In this case, the acceptance ratio simplifies as

a(z → z′) = min

(
1,

exp(−H(z′)

exp(H(z))

)
.

Maxence Noble
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
10 / 34



Motivations and background
Description of BHMC

Results
Conclusion

General setting
RMHMC: basics and challenges
Summary of the motivations and assumptions

Description of RMHMC (Girolami and Calderhead, 2011)
In most cases, qz is chosen stochastic. In RMHMC, qz is deterministic, defined
by a map F : T⋆M → T⋆M, i.e., dqz(z′) = dδF(z)(z

′).

Ideal setting: we choose F = s ◦Ψt for some t > 0. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• π(z′) = π(z) by conservation of the Hamiltonian.

In this case, a(z → z′) = 1; we just have to follow the Hamiltonian flow !
However, F cannot be computed exactly...

Let h > 0 be a step-size. Consider Th ≈ Ψh a numerical integrator such that
Th is symplectic and s ◦ Th is involutive (Th is said to be reversible).

Realistic setting: we choose F = s ◦ Th. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• However, π(z′) ̸= π(z) due to ODE integration error.

In this case, the acceptance ratio simplifies as

a(z → z′) = min

(
1,

exp(−H(z′)

exp(H(z))

)
.

Maxence Noble
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
10 / 34



Motivations and background
Description of BHMC

Results
Conclusion

General setting
RMHMC: basics and challenges
Summary of the motivations and assumptions

Description of RMHMC (Girolami and Calderhead, 2011)
In most cases, qz is chosen stochastic. In RMHMC, qz is deterministic, defined
by a map F : T⋆M → T⋆M, i.e., dqz(z′) = dδF(z)(z

′).

Ideal setting: we choose F = s ◦Ψt for some t > 0. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• π(z′) = π(z) by conservation of the Hamiltonian.

In this case, a(z → z′) = 1; we just have to follow the Hamiltonian flow !
However, F cannot be computed exactly...

Let h > 0 be a step-size. Consider Th ≈ Ψh a numerical integrator such that
Th is symplectic and s ◦ Th is involutive (Th is said to be reversible).

Realistic setting: we choose F = s ◦ Th. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• However, π(z′) ̸= π(z) due to ODE integration error.

In this case, the acceptance ratio simplifies as

a(z → z′) = min

(
1,

exp(−H(z′)

exp(H(z))

)
.

Maxence Noble
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
10 / 34



Motivations and background
Description of BHMC

Results
Conclusion

General setting
RMHMC: basics and challenges
Summary of the motivations and assumptions

Description of RMHMC (Girolami and Calderhead, 2011)
In most cases, qz is chosen stochastic. In RMHMC, qz is deterministic, defined
by a map F : T⋆M → T⋆M, i.e., dqz(z′) = dδF(z)(z

′).

Ideal setting: we choose F = s ◦Ψt for some t > 0. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• π(z′) = π(z) by conservation of the Hamiltonian.

In this case, a(z → z′) = 1; we just have to follow the Hamiltonian flow !
However, F cannot be computed exactly...

Let h > 0 be a step-size. Consider Th ≈ Ψh a numerical integrator such that
Th is symplectic and s ◦ Th is involutive (Th is said to be reversible).

Realistic setting: we choose F = s ◦ Th. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• However, π(z′) ̸= π(z) due to ODE integration error.

In this case, the acceptance ratio simplifies as

a(z → z′) = min

(
1,

exp(−H(z′)

exp(H(z))

)
.

Maxence Noble
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
10 / 34



Motivations and background
Description of BHMC

Results
Conclusion

General setting
RMHMC: basics and challenges
Summary of the motivations and assumptions

Description of RMHMC (Girolami and Calderhead, 2011)
In most cases, qz is chosen stochastic. In RMHMC, qz is deterministic, defined
by a map F : T⋆M → T⋆M, i.e., dqz(z′) = dδF(z)(z

′).

Ideal setting: we choose F = s ◦Ψt for some t > 0. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• π(z′) = π(z) by conservation of the Hamiltonian.

In this case, a(z → z′) = 1; we just have to follow the Hamiltonian flow !
However, F cannot be computed exactly...

Let h > 0 be a step-size. Consider Th ≈ Ψh a numerical integrator such that
Th is symplectic and s ◦ Th is involutive (Th is said to be reversible).

Realistic setting: we choose F = s ◦ Th. Let z′ = F(z).

• F is symplectic, qz(z′) = 1 and qz′(z) = δ(F◦F)(z)(z) = 1.

• However, π(z′) ̸= π(z) due to ODE integration error.

In this case, the acceptance ratio simplifies as

a(z → z′) = min

(
1,

exp(−H(z′)

exp(H(z))

)
.

Maxence Noble
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
10 / 34



Motivations and background
Description of BHMC

Results
Conclusion

General setting
RMHMC: basics and challenges
Summary of the motivations and assumptions

Description of RMHMC (Girolami and Calderhead, 2011)

Algorithm 1: RMHMC (Girolami and Calderhead, 2011)

HMC Input: (x0, p0) ∈ T⋆M, β ∈ (0, 1], N ∈ N∗

ODE Input: h > 0, K ∈ N∗, numerical integrator Th : T⋆M → T⋆M

Output: (xn, pn)n∈[N ]

1 for n = 1, . . . , N do
2 Step 1: momentum sampling with refresh
3 p̃ ∼ N(0, g(xn−1)) , pn−1 ←

√
1− βpn−1 +

√
βp̃

4 Step 2: performing K steps of discretized ODE (1) with Th

5 (x′, p′)← (Th)
K(xn−1, pn−1) =⇒ (x′, p′) ≈ ΨKh(xn−1, pn−1)

6 Step 3: applying the Metropolis-Hastings (MH) acceptance filter
7 a← min(1, exp[−H(x′, p′) + H(xn−1, pn−1)]) , u ∼ U [0, 1]

8 if u ≤ a then x̄n, p̄n ← x′, p′;
9 else x̄n, p̄n ← xn−1, pn−1;

10 Step 4: flipping the sign of the momentum
11 xn, pn ← x̄n,−p̄n (guarantees reversibility and exploration)
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Results on RMHMC

Originally, Girolami and Calderhead (2011) considered posterior distributions
from Bayesian models and chose:

• g as the Fisher-Rao metric,

• Th as the Leapfrog integrator (Hairer et al., 2006) with fixed-point steps.

Figure: Figure 4 in Girolami and Calderhead (2011): HMC (left) vs RMHMC (right).

Q1: Can we enlarge the design of g to geometric constraints ?

Q2: Can we derive theoretical results from the properties of M, g and Th ?
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Introducing self-concordance

If M is convex, one can design a self-concordant barrier ϕ on M (Nesterov and
Nemirovskii, 1994) and set g = D2ϕ, as done by Kook et al. (2022).

Definition 1 (Self-concordance, Nesterov and Nemirovskii (1994))

Let U be a non-empty open convex domain in Rd. A function ϕ : U → R is said
to be a ν-self-concordant (s.-c.) barrier (with ν ≥ 1) on U if it satisfies:

(a) ϕ ∈ C3(U,R) and ϕ is convex,

(b) ϕ(x) −→ +∞ as x → ∂U,

(c) Other technical conditions on D3ϕ,D2ϕ,Dϕ:

≈ D2ϕ is 2-Lipschitz and ≈ ϕ is ν-Lipschitz .
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Introducing self-concordance

If M is convex, one can design a self-concordant barrier ϕ on M (Nesterov and
Nemirovskii, 1994) and set g = D2ϕ, as done by Kook et al. (2022).

➔ S.-c. barriers are well-suited for their minimization by the Newton method.

➔ The analysis of the convergence of Newton methods based on s.-c. is based
on the metric g(x) = D2ϕ(x).

➔ Balls for ∥·∥g(x) (Dikin ellipsoids) are central for the study of s.-c.
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Self-concordance on a polytope

Assume that M is the polytope M = {x ∈ Rd : Ax < b}, A ∈ Rm×d, b ∈ Rm.

The logarithmic barrier on M is given by

ϕ(x) = −
m∑
i=1

ln
(
bi −A⊤

i x
)

,

and verifies (Nesterov and Nemirovski, 1998):

• ϕ is a m-self-concordant barrier.

Figure: A self-concordant (logarithmic) barrier for a polytope M ⊂ R2 with three Dikin
ellipsoids {y ∈ Rd : y⊤g(x)y < 1} centered at x = (0, 0), (0, 1.5), (1.5,−1).
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Self-concordance in sampling algorithms
Self-concordant barriers provide theoretical guarantees for polytope sampling:

• Dikin Walk (Kannan and Narayanan, 2009) → no experiment
• Geodesic Walk (Lee and Vempala, 2017a) → no experiment
• RMHMC with a metric derived from a s.-c. barrier:

RHMC (Lee and Vempala, 2018) → no experiment:
• Consider the time-continuous Hamiltonian dynamics.
• Assume that it exists for all time and is unique: hard to verify!
• This assumption is not verified in the paper.

CRHMC (Kook et al., 2022):
• Here, Th computes exact solutions of an implicit scheme Φh,
that is proved to symplectic and reversible.

• Assume that Φh admits a unique solution for any initial point
=⇒ this guarantees reversibility as explained before.

• However, this assumption is not verified in practice.
• Their experiments1 highlight asymptotic bias!

Can we have better practical and theoretical guarantees ?

1https://github.com/ConstrainedSampler/PolytopeSamplerMatlab
Maxence Noble
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Self-concordant barriers provide theoretical guarantees for polytope sampling:

• RMHMC with a metric derived from a s.-c. barrier:

RHMC (Lee and Vempala, 2018) → no experiment:
• Consider the time-continuous Hamiltonian dynamics.
• Assume that it exists for all time and is unique: hard to verify!
• This assumption is not verified in the paper.

CRHMC (Kook et al., 2022):
• Here, Th computes exact solutions of an implicit scheme Φh,
that is proved to symplectic and reversible.

• Assume that Φh admits a unique solution for any initial point
=⇒ this guarantees reversibility as explained before.

• However, this assumption is not verified in practice.
• Their experiments2 highlight asymptotic bias!

Can we have better practical and theoretical guarantees ?

Zappa et al. (2018) tackle a similar bias for Ball Walk by enforcing the
reversibility of the Markov kernel with an “involution checking”.

2https://github.com/ConstrainedSampler/PolytopeSamplerMatlab
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What is at stake ?

➔ Traditional MCMC approaches are not efficient.
➔ RMHMC implemented with g may work but comes with asymptotic bias.
➔ This bias could be tackled by an “ involution checking step” (ICS).

Can we implement this check in RMHMC and derive satisfying theoretical and
numerical results ? → M.N., Valentin de Bortoli, Alain Durmus (NeurIPS,
2023). Unbiased constrained sampling with Self-Concordant Barrier
Hamiltonian Monte Carlo (BHMC).
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Notation and reminders

• Momentum reversal operator: s(x, p) = (x,−p).

Definition 2 (Reversibility up to momentum reversal.)

Let Q : T⋆M× B(T⋆M) → [0, 1] be a transition probability kernel and let π̄ be
a probability distribution on T⋆M. Then, Q is said to be reversible up to
momentum reversal with respect to π̄ if for any f ∈ C(T⋆M× T⋆M,R) with
compact support∫

T⋆M×T⋆M
f(z, z′)Q(z, dz′)π̄(dz) =

∫
T⋆M×T⋆M

f(s(z′), s(z))Q(z, dz′)π̄(dz) .

Maxence Noble
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
19 / 34



Motivations and background
Description of BHMC

Results
Conclusion

General setting
RMHMC: basics and challenges
Summary of the motivations and assumptions

Notation and reminders

• Momentum reversal operator: s(x, p) = (x,−p).

• Pushforward: φ#µ ∈ P(Y) is the pushforward of µ ∈ P(X) by φ : X → Y.

Lemma 3 (Preservation of measure.)

Let Q : T⋆M× B(T⋆M) → [0, 1] be a transition probability kernel and let π̄ be
a probability distribution on T⋆M. Assume that s#π̄ = π̄ and that Q is
reversible up to momentum reversal with respect to π̄. Then π̄ is an invariant
measure for Q.
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Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by Shahbaba et al. (2014), we split the Hamiltonian H = H1 +H2,

H1(x, p) = V (x) + 1
2
log(det g(x)) , (separable)

H2(x, p) =
1
2
∥p∥2g(x)−1 . (non separable)

➔ Explicit integrator of H1

Sh/2 : T⋆M → T⋆M is the map defined by Sh/2(x, p) = (x, p− h
2
∂xH1(x, p))

=⇒ Sh/2 is symplectic and reversible.
• Sh/2 approximates the dynamics of H1 on a step-size h/2.
• s ◦ Sh/2 is an involution.
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Introducing BHMC

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?
As done by Shahbaba et al. (2014), we split the Hamiltonian H = H1 +H2,

H2(x, p) =
1
2
∥p∥2g(x)−1 . (non separable)

➔ Implicit integrator of H2

Gh is the Leapfrog integrator of H2 with step-size h: for any z(0) ∈ T⋆M,
Gh(z

(0)) ⊂ T⋆M consists of points z(1) = (x(1), p(1)) that solve

p(1/2) = p(0) − h
2
∂xH2(x

(0), p(1/2)) ,

x(1) = x(0) + h
2
[∂pH2(x

(0), p(1/2)) + ∂pH2(x
(1), p(1/2))] ,

p(1) = p(1/2) − h
2
∂xH2(x

(1), p(1/2)) .

=⇒ Gh is symplectic and reversible (Hairer et al., 2006)
=⇒ above, there may be either 0, 1, 2,. . . solutions !
• Fh = Gh ◦ s is a set-valued map.
• Fh ◦ s approximates the dynamics of H2 on a step-size h.
• If |Fh(z)| > 0 then z ∈ (Fh ◦ Fh)(z) (almost an involution).
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Hamiltonian integrators of BHMC
Introducing BHMC

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by Shahbaba et al. (2014), we split the Hamiltonian H = H1 +H2,

H1(x, p) = V (x) + 1
2
log(det g(x)) , (separable)

H2(x, p) =
1
2
∥p∥2g(x)−1 . (non separable)

➔ Explicit integrator of H1

• Map Sh/2 : T⋆M → T⋆M defined by Sh/2(x, p) = (x, p− h
2
∂xH1(x, p)).

➔ Implicit integrator of H2

• Set-valued map Fh = Gh ◦ s, where Gh : T⋆M → 2T
⋆M is the Leapfrog

integrator of H2 with step-size h (none, one or multiple solutions).

➔ Implicit integrator of H
• Set-valued map Rh = (s ◦ Sh/2) ◦ Fh ◦ (s ◦ Sh/2).
• By composition, Rh is symplectic and reversible.
• s ◦ Rh approximates the dynamics of H on a step-size h.
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Numerical integrators

In practice, we do not have access to Fh but approximate it with a numerical
map Φh, defined on a domain domΦh ⊂ T⋆M with Φh(domΦh) ⊂ T⋆M.

We also define the numerical map RΦ
h : (s ◦ Sh/2)(domΦh) ⊂ T⋆M → T⋆M

RΦ
h = (s ◦ Sh/2) ◦ Φh ◦ (s ◦ Sh/2) .

Similarly to Rh, s ◦ RΦ
h approximates the dynamics of H on a step-size h.

How to implement Φh ?
• Fixed-point solver (ours, Kook et al. (2022)).

• Newton’s solver (Brofos and Lederman, 2021a,b).

For any z ∈ T⋆M, we define on T⋆M the norm ∥ · ∥z by

∥z′∥z = ∥x′∥g(x) + ∥p′∥g(x)−1 , z′ = (x′, p′) .

• On x′: the Dikin norm.

• On p′: the “natural“ norm induced by g(x)−1.
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BHMC: CRHMC with “involution checking step”

Algorithm 2: Barrier HMC (BHMC)

HMC Input: (x0, p0) ∈ T⋆M, β ∈ (0, 1], N ∈ N
ODE Input: h > 0, η > 0, numerical integrator Φh with domain domΦh

Output: (xn, pn)n∈[N ]

1 for n = 1, . . . , N do
2 Step 1: p̃ ∼ N(0, g(xn−1)) , pn−1 ←

√
1− βpn−1 +

√
βp̃

3 Step 2: solving discretized ODE (1) with Φh

4 x′, p′ ← xn−1, pn−1, x(0), p(0) ← (s ◦ Sh/2)(xn−1, pn−1)

5 if z(0) ∈ domΦh
then

6 z(1) = Φh(z
(0)), err = ∥z(0) − Φh(z

(1))∥
z(0)

+ ∥z(0) − Φh(z
(1))∥

Φh(z(1))

7 if z(1) ∈ domΦh
& err ≤ η then x′, p′ ← (s ◦ Sh/2)(x

(1), p(1));

8 Step 3: a← min(1, exp[−H(x′, p′) + H(xn−1, pn−1)]) , u ∼ U [0, 1]

9 if u ≤ a then x̄n, p̄n ← x′, p′;
10 else x̄n, p̄n ← xn−1, pn−1;
11 Step 4: xn, pn ← x̄n,−p̄n (guarantees reversibility and exploration)

➔ Checking that Φh is well defined on the iterates.

➔ New: checking that (Φh ◦ Φh)(z
(0)) ≈ z(0) → involution checking !
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Assumptions

We aim at sampling from a target distribution π supported on M

dπ(x)/dx ∝ exp[−V (x)] , V ∈ C2(M,R) .

A1 (Assumption on M.)

M is an open convex bounded subset of Rd.

A2 (Assumption on g.)

There exists ϕ, ν-s.-c. barrier on M such that g = D2ϕ.
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From implicit to numerical integrators

We prove that Fh can be locally identified with a C1-diffeomorphism.

Proposition 1 (Result on Fh.)

Assume A1, A2. Let z(0) ∈ T⋆M, then there exists h⋆ > 0 (explicit) such that
for any h ∈ (0, h⋆), there exist z

(1)
h ∈ Fh(z

(0)), a neighborhood U ⊂ T⋆M of
z(0) and a C1-diffeomorphism γh : U → γh(U) ⊂ T⋆M with

(a) γh(z
(0)) = z

(1)
h and |det Jac(γh)| = 1.

(b) γh(z) is the only element of Fh(z) in γh(U) for z ∈ U.

Following Proposition 1, we derive a technical assumption on the
corresponding numerical integrator Φh, denoted by A3: basically, we assume
that Φh is locally involutive.
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Deriving the reversibility in BHMC

• Q0 : T⋆M× B(T⋆M) → [0, 1]: the transition kernel for Step 1.
→ Q0 is reversible up to m.-r. w.r.t. π̄

• Q1 : T⋆M× B(T⋆M) → [0, 1], the transition kernel for Steps 2 to 4.
→ Q1 is reversible up to m.-r. w.r.t. π̄ under A1, A2 and A3.

• Q : T⋆M× B(T⋆M) → [0, 1], the transition kernel for Steps 1 to 4 such that

Q(z, dz′) =

∫
T⋆M×T⋆M

Q0(z, dz1)Q1(z1, dz
′) .

Theorem 4 (Reversibility of Q.)

Assume A1, A2, A3. Then, Q is reversible up to momentum reversal.
In particular, π̄ is an invariant measure for Q.
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Sampling on the simplex

Parameters:
➔ M = {x ∈ Rd :

∑d
i=1 xi = 1, xi ≥ 0,∀i ∈ {1, . . . , d}} with d ∈ {5, 10}

➔ η = 10 if d = 5 and η = 200 if d = 10

We aim to sample from a truncated Gaussian distribution, and display the
estimated expectation of a fixed observable.

Figure: Comparison between n-BHMC and CRHMC on the simplex.
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Conclusion

M.N., Valentin de Bortoli, Alain Durmus (NeurIPS, 2023). Unbiased
constrained sampling with Self-Concordant BHMC.

➔ We introduced a novel version of RMHMC, Barrier HMC, relying on a
“involution checking step”, to sample from a distribution π over a bounded
open convex subset M ⊂ Rd equipped with a self-concordant barrier ϕ.

• BHMC approximates the dynamics with a numerical integrator.

➔ We proved that π is invariant for BHMC.

➔ We showed that BHMC generates less asymptotic bias than the version of
RMHMC proposed by Kook et al. (2022) (see the paper for more details).

Future work:

→ Investigate the “coupled” behaviour of the hyperparameters h and η.

→ Study the irreducibility of n-BHMC (not easy task).
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