Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo

Maxence Noble¹ Valentin de Bortoli² Alain Durmus¹

¹ Centre de Mathématiques Appliquées, Ecole Polytechnique Institut Polytechnique de Paris, France

²Département d'Informatique, École Normale Supérieure CNRS, Université PSL, Paris, France

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-65-0)

A BA A BA

Outline

2 [Description of BHMC](#page-44-0)

³ [Results](#page-55-0)

[Motivations and background](#page-2-0)

[Description of BHMC](#page-44-0) [Results](#page-55-0) [Conclusion](#page-60-0) [General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Outline

¹ [Motivations and background](#page-2-0)

- **•** [General setting](#page-3-0)
- [RMHMC: basics and challenges](#page-7-0)
- [Summary of the motivations and assumptions](#page-41-0)

² [Description of BHMC](#page-44-0)

[Results](#page-55-0)

4 [Conclusion](#page-60-0)

[Motivations and background](#page-2-0)

[Description of BHMC](#page-44-0) [Results](#page-55-0) [Conclusion](#page-60-0) [General setting](#page-4-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Constrained sampling

- $\bullet\,$ Consider a $\mathsf{subset}\ \mathsf{M}\subset\mathbb{R}^d.$
- Our goal: sample from a target distribution π supported on M and known up to a normalising constant Z

 $d\pi(x)/dx = \exp[-V(x)]/Z$, $V \in C^2(M, \mathbb{R})$.

[Conclusion](#page-60-0)

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Constrained sampling

- $\bullet\,$ Consider a $\mathsf{subset}\ \mathsf{M}\subset\mathbb{R}^d.$
- Our goal: sample from a target distribution π supported on M and known up to a normalising constant Z

 $d\pi(x)/dx = \exp[-V(x)]/Z$, $V \in C^2(M, \mathbb{R})$.

 $\bm{\rightarrow}$ When M $=$ \mathbb{R}^d , gradient-based Markov Chain Monte Carlo (MCMC) methods are very popular and come with some theoretical guarantees under assumptions on V [\(Duane et al., 1987;](#page-63-0) [Roberts and Tweedie, 1996\)](#page-64-0).

→ However, their extension to **constrained sampling** still faces challenges [\(Gelfand et al., 1992;](#page-63-1) [Pakman and Paninski, 2014;](#page-64-1) [Lan and Shahbaba, 2015\)](#page-63-2).

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

About MCMC methods

Traditional MCMC approaches for constrained sampling suffer from poor mixing times if M or V have a sharp geometry, including

- Hit-and-Run [\(Lovász and Vempala, 2004\)](#page-64-2),
- Ball Walk [\(Lee and Vempala, 2017b\)](#page-64-3) (left),
- Hamiltonian Monte Carlo (HMC) [\(Duane](#page-63-0) [et al., 1987\)](#page-63-0) (right).

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

About MCMC methods

Traditional MCMC approaches for constrained sampling suffer from poor mixing times if M or V have a sharp geometry, including

- Hit-and-Run [\(Lovász and Vempala, 2004\)](#page-64-2),
- Ball Walk [\(Lee and Vempala, 2017b\)](#page-64-3) (left),
- Hamiltonian Monte Carlo (HMC) [\(Duane](#page-63-0) [et al., 1987\)](#page-63-0) (right).

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

This fact motivates to directly incorporate the geometric constraints into the sampling algorithms.

- If $M = \{x \in \mathbb{R}^d \,:\, c(x) = 0\}$: HMC + RATTLE integrator [\(Leimkuhler](#page-64-4) [and Skeel, 1994;](#page-64-4) [Brubaker et al., 2012\)](#page-63-3).
- If (M, g) is Riemannian submanifold: Riemannian Manifold HMC (RMHMC) [\(Girolami and Calderhead, 2011\)](#page-63-4).

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-10-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Basics of RMHMC

Assume M (e.g., open) is a d -dimensional submanifold of \mathbb{R}^d , endowed with some Riemannian metric g.

Results on (M, g) (see Lee (2006) and Mok (1977) for details):

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-10-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Basics of RMHMC

Assume M (e.g., open) is a d -dimensional submanifold of \mathbb{R}^d , endowed with some Riemannian metric g.

Results on (M, g) (see Lee (2006) and Mok (1977) for details):

• Volume element on M: $\text{dvol}_M(x) = \sqrt{\det g(x)} \text{d}x$.

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Basics of RMHMC

Assume M (e.g., open) is a d -dimensional submanifold of \mathbb{R}^d , endowed with some Riemannian metric g.

Results on (M, g) (see Lee (2006) and Mok (1977) for details):

• Volume element on M: $\text{dvol}_M(x) = \sqrt{\det g(x)} \text{d}x$.

$$
\begin{array}{ll}\bullet\ & T_x^*M: \text{ cotangent space at }x\in M\\ & \to T_x^*M\equiv \mathbb{R}^d, \text{ endowed with the scalar product }\langle\cdot,\cdot\rangle_{\mathfrak{g}(x)^{-1}}\\ & \to \text{Standard Gaussian distr. w.r.t. } \left\|\cdot\right\|_{\mathfrak{g}(x)^{-1}}: \mathrm{N}_x(0,\mathrm{I}_d)\equiv \mathrm{N}(0,\mathfrak{g}(x))\end{array}
$$

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Basics of RMHMC

Assume M (e.g., open) is a d -dimensional submanifold of \mathbb{R}^d , endowed with some Riemannian metric g.

Results on (M, g) (see [Lee \(2006\)](#page-64-5) and [Mok \(1977\)](#page-64-6) for details):

• Volume element on M: $\text{dvol}_M(x) = \sqrt{\det g(x)} \text{d}x$.

$$
\begin{array}{ll}\bullet\ & T_x^*M: \text{ cotangent space at }x\in M\\ & \to T_x^*M\equiv \mathbb{R}^d, \text{ endowed with the scalar product }\langle\cdot,\cdot\rangle_{\mathfrak{g}(x)^{-1}}\\ & \to \text{Standard Gaussian distr. w.r.t. } \left\|\cdot\right\|_{\mathfrak{g}(x)^{-1}}: \mathrm{N}_x(0,\mathrm{I}_d)\equiv \mathrm{N}(0,\mathfrak{g}(x))\end{array}
$$

• T^*M : cotangent bundle of M, defined by $T^*M = \sqcup_{x \in M} \{x\} \cup T^*_xM$ \rightarrow 2d-dim. submanifold which may be endowed with a specific metric g^* inherited from g which verifies

$$
\mathrm{dvol}_{\mathrm{T}^{\star}\mathrm{M}}(x,p)=\sqrt{\det\mathfrak{g}^{\star}(x,p)}\mathrm{d}x\mathrm{d}p=\mathrm{\mathbf{d}}x\mathrm{\mathbf{d}}p
$$

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Basics of RMHMC

Assume M (e.g., open) is a d -dimensional submanifold of \mathbb{R}^d , endowed with some Riemannian metric g.

- \rightarrow Results on (M, g) (see [Lee \(2006\)](#page-64-5) and [Mok \(1977\)](#page-64-6) for details):
	- Volume element on M: $dvol_M(x) = \sqrt{\det g(x)}dx$.
	- Volume element on $\mathrm{T}^\star\mathsf{M}$: $\mathrm{dvol}_{\mathrm{T}^\star\mathsf{M}}(x,p)=\sqrt{\det\mathfrak{g}^\star(x,p)}\mathrm{d} x\mathrm{d} p=\mathrm{d} x\mathrm{d} p$.

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Basics of RMHMC

Assume M (e.g., open) is a d -dimensional submanifold of \mathbb{R}^d , endowed with some Riemannian metric g.

- \rightarrow Results on (M, g) (see [Lee \(2006\)](#page-64-5) and [Mok \(1977\)](#page-64-6) for details):
	- Volume element on M: $dvol_M(x) = \sqrt{\det g(x)}dx$.
	- Volume element on $\mathrm{T}^\star\mathsf{M}$: $\mathrm{dvol}_{\mathrm{T}^\star\mathsf{M}}(x,p)=\sqrt{\det\mathfrak{g}^\star(x,p)}\mathrm{d} x\mathrm{d} p=\mathrm{d} x\mathrm{d} p$.
- \rightarrow In terms of probability distributions:
	- Target measure: $d\pi(x)/dvol_M(x) = \exp[-V(x) \frac{1}{2}\log(\det \mathfrak{g}(x))]/Z$.
	- Hamiltonian on $\mathrm{T}^\star\mathsf{M}$: $H(x,p) \stackrel{\mathsf{def}}{=} V(x) + \frac{1}{2}\log\left(\det \mathfrak{g}(x)\right) + \frac{1}{2}||p||_{\mathfrak{g}(x)^{-1}}^2$.

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Basics of RMHMC

Assume M (e.g., open) is a d -dimensional submanifold of \mathbb{R}^d , endowed with some Riemannian metric g.

- \rightarrow Results on (M, g) (see [Lee \(2006\)](#page-64-5) and [Mok \(1977\)](#page-64-6) for details):
	- Volume element on M: $dvol_M(x) = \sqrt{\det g(x)}dx$.
	- Volume element on $\mathrm{T}^\star\mathsf{M}$: $\mathrm{dvol}_{\mathrm{T}^\star\mathsf{M}}(x,p)=\sqrt{\det\mathfrak{g}^\star(x,p)}\mathrm{d} x\mathrm{d} p=\mathrm{d} x\mathrm{d} p$.
- \rightarrow In terms of probability distributions:
	- Target measure: $d\pi(x)/dvol_M(x) = \exp[-V(x) \frac{1}{2}\log(\det \mathfrak{g}(x))]/Z$.
	- Hamiltonian on $\mathrm{T}^\star\mathsf{M}$: $H(x,p) \stackrel{\mathsf{def}}{=} V(x) + \frac{1}{2}\log\left(\det \mathfrak{g}(x)\right) + \frac{1}{2}||p||_{\mathfrak{g}(x)^{-1}}^2$.

RMHMC aims at sampling from the augmented target distribution $\bar{\pi}$ on T^{\star} M

$$
d\bar{\pi}(x,p) \stackrel{\text{def}}{=} d\pi(x) N_x(p;0,I_d) dp \propto \exp[-H(x,p)] \text{dvol}_{T^*M}(x,p).
$$

If $g(x) = I_d$, we recover the setting of "Euclidean" HMC !

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Definition of the Hamiltonian dynamics

HMC Ham. on \mathbb{R}^{2d} : $H(x,p) = V(x) + \frac{1}{2} ||p||_2^2$. **RMHMC Ham.** on T^{*}M : $H(x,p) = V(x) + \frac{1}{2} \log (\det \mathfrak{g}(x)) + \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2$.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Definition of the Hamiltonian dynamics

HMC Ham. on \mathbb{R}^{2d} : $H(x,p) = V(x) + \frac{1}{2} ||p||_2^2$. **RMHMC Ham.** on T^{*}M : $H(x,p) = V(x) + \frac{1}{2} \log (\det \mathfrak{g}(x)) + \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2$.

The **Hamiltonian dynamics** associated with H is given by the following ODEs

$$
\dot{x}_t = \partial_p H(x_t, p_t) , \qquad \dot{p}_t = -\partial_x H(x_t, p_t) . \qquad (1)
$$

The corresponding flow is denoted by $\Psi : t, (x_0, p_0) \mapsto (x_t, p_t)$.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Definition of the Hamiltonian dynamics

HMC Ham. on \mathbb{R}^{2d} : $H(x,p) = V(x) + \frac{1}{2} ||p||_2^2$. **RMHMC Ham.** on T^{*}M : $H(x,p) = V(x) + \frac{1}{2} \log (\det \mathfrak{g}(x)) + \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2$.

The **Hamiltonian dynamics** associated with H is given by the following ODEs

$$
\dot{x}_t = \partial_p H(x_t, p_t) , \qquad \dot{p}_t = -\partial_x H(x_t, p_t) . \qquad (1)
$$

The corresponding flow is denoted by $\Psi : t, (x_0, p_0) \mapsto (x_t, p_t)$.

- \rightarrow Conservation of the Hamiltonian through time.
- \rightarrow Volume preservation through time: the flow Ψ is symplectic.
- \rightarrow Time-reversibility: $\Psi_t^{-1} = s \circ \Psi_t \circ s$ where $s(x, p) = (x, -p)$. In particular, $s \circ \Psi_t$ is an involution.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Definition of the Hamiltonian dynamics

HMC Ham. on \mathbb{R}^{2d} : $H(x,p) = V(x) + \frac{1}{2} ||p||_2^2$. **RMHMC Ham.** on T^{*}M : $H(x,p) = V(x) + \frac{1}{2} \log (\det \mathfrak{g}(x)) + \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2$.

The **Hamiltonian dynamics** associated with H is given by the following ODEs

$$
\dot{x}_t = \partial_p H(x_t, p_t) , \qquad \dot{p}_t = -\partial_x H(x_t, p_t) . \qquad (1)
$$

The corresponding flow is denoted by $\Psi : t, (x_0, p_0) \mapsto (x_t, p_t)$.

 \rightarrow Conservation of the Hamiltonian through time.

 \rightarrow Volume preservation through time: the flow Ψ is symplectic.

 \rightarrow Time-reversibility: $\Psi_t^{-1} = s \circ \Psi_t \circ s$ where $s(x, p) = (x, -p)$. In particular, $s \circ \Psi_t$ is an involution.

> HMC : $\dot{x} = p_t$, $\dot{p}_t = -\nabla V(x_t).$ **RMHMC**: $\dot{x}_t = g(x_t)^{-1} p_t, \qquad \dot{p}_t = -\nabla V(x_t) + L(x_t).$

where $L(x) = -\frac{1}{2}\mathfrak{g}(x)^{-1}$: $D\mathfrak{g}(x) + \frac{1}{2}D\mathfrak{g}(x)[\dot{x}, \dot{x}].$ The Riemannian metric $\mathfrak g$ is incorporated into the dynamics, but this dynamics is more complex to solve...

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

We recall that the target distribution on $\mathrm{T}^{\star}\mathsf{M}$ is given by

 $d\bar{\pi}(x,p) \stackrel{\mathsf{def}}{=} \mathrm{d}\pi(x) \mathrm{N}_x(p;0,\mathrm{I}_d) \mathrm{d}p \propto \exp[-H(x,p)] \mathrm{d}\mathrm{vol}_{\mathrm{T}^*\mathsf{M}}(x,p)$.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

We recall that the target distribution on $\mathrm{T}^{\star}\mathsf{M}$ is given by

 $d\bar{\pi}(x,p) \stackrel{\mathsf{def}}{=} \mathrm{d}\pi(x) \mathrm{N}_x(p;0,\mathrm{I}_d) \mathrm{d}p \propto \exp[-H(x,p)] \mathrm{d}\mathrm{vol}_{\mathrm{T}^*\mathsf{M}}(x,p)$.

RMHMC builds a Markov chain $(x_n, p_n)_{n \in N}$ via a Gibbs-based scheme. For any $n \geq 1$, given $(x_{n-1}, p_{n-1}) \in T^{\star}M$, we sample

> (1) $p_n \sim N_{x_{n-1}}(0, I_d) dp$, (2) $x_n \sim d\bar{\pi}(x_n|p_n) \propto \exp[-H(x_n, p_n)] \frac{d}{d\mathrm{vol}_M(x_n)}$.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

We recall that the target distribution on $\mathrm{T}^{\star}\mathsf{M}$ is given by

 $d\bar{\pi}(x,p) \stackrel{\mathsf{def}}{=} \mathrm{d}\pi(x) \mathrm{N}_x(p;0,\mathrm{I}_d) \mathrm{d}p \propto \exp[-H(x,p)] \mathrm{d}\mathrm{vol}_{\mathrm{T}^*\mathsf{M}}(x,p)$.

RMHMC builds a Markov chain $(x_n, p_n)_{n \in N}$ via a Gibbs-based scheme. For any $n \geq 1$, given $(x_{n-1}, p_{n-1}) \in T^{\star}M$, we sample

(1)
$$
p_n \sim N_{x_{n-1}}(0, I_d) dp
$$
,
\n(2) $x_n \sim d\overline{\pi}(x_n|p_n) \propto \exp[-H(x_n, p_n)] \text{dvol}_M(x_n)$.

Step (2) in theory: we want to compute a Markov kernel that leaves $\bar{\pi}(\cdot|p_n)$ invariant on M. Denote $z = (x_{n-1}, p_n)$ and define

- A proposal distribution $dq_z(z')$ which preserves volume.
- The acceptance ratio $a(z \to z') = \min\left(1, \frac{\bar{\pi}(z')q_{z'}(z)}{\bar{\pi}(z)q_z(z')}\right)$.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

We recall that the target distribution on $\mathrm{T}^{\star}\mathsf{M}$ is given by

 $d\bar{\pi}(x,p) \stackrel{\mathsf{def}}{=} \mathrm{d}\pi(x) \mathrm{N}_x(p;0,\mathrm{I}_d) \mathrm{d}p \propto \exp[-H(x,p)] \mathrm{d}\mathrm{vol}_{\mathrm{T}^*\mathsf{M}}(x,p)$.

RMHMC builds a Markov chain $(x_n, p_n)_{n \in N}$ via a Gibbs-based scheme. For any $n \geq 1$, given $(x_{n-1}, p_{n-1}) \in T^{\star}M$, we sample

(1)
$$
p_n \sim N_{x_{n-1}}(0, I_d) dp
$$
,
\n(2) $x_n \sim d\overline{\pi}(x_n|p_n) \propto \exp[-H(x_n, p_n)] \text{dvol}_M(x_n)$.

Step (2) in theory: we want to compute a Markov kernel that leaves $\bar{\pi}(\cdot|p_n)$ invariant on M. Denote $z = (x_{n-1}, p_n)$ and define

- A proposal distribution $dq_z(z')$ which preserves volume.
- The acceptance ratio $a(z \to z') = \min\left(1, \frac{\bar{\pi}(z')q_{z'}(z)}{\bar{\pi}(z)q_z(z')}\right)$.

Step (2) in practice:

\n- (a) Sample
$$
z' \sim q_z
$$
 and $U \sim U[0, 1]$.
\n- (b) If $U \leq a$, set $z^* = z'$ (accepted); otherwise, set $z^* = z$ (rejected).
\n

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

We recall that the target distribution on $\mathrm{T}^{\star}\mathsf{M}$ is given by

 $d\bar{\pi}(x,p) \stackrel{\mathsf{def}}{=} \mathrm{d}\pi(x) \mathrm{N}_x(p;0,\mathrm{I}_d) \mathrm{d}p \propto \exp[-H(x,p)] \mathrm{d}\mathrm{vol}_{\mathrm{T}^*\mathsf{M}}(x,p)$.

RMHMC builds a Markov chain $(x_n, p_n)_{n \in N}$ via a Gibbs-based scheme. For any $n \geq 1$, given $(x_{n-1}, p_{n-1}) \in T^{\star}M$, we sample

(1)
$$
p_n \sim N_{x_{n-1}}(0, I_d) dp
$$
,
\n(2) $x_n \sim d\overline{\pi}(x_n|p_n) \propto \exp[-H(x_n, p_n)] \text{dvol}_M(x_n)$.

Step (2) in theory: we want to compute a Markov kernel that leaves $\bar{\pi}(\cdot|p_n)$ invariant on M. Denote $z = (x_{n-1}, p_n)$ and define

- A proposal distribution $dq_z(z')$ which preserves volume.
- The acceptance ratio $a(z \to z') = \min\left(1, \frac{\bar{\pi}(z')q_{z'}(z)}{\bar{\pi}(z)q_z(z')}\right)$.

Step (2) in practice:

\n- (a) Sample
$$
z' \sim q_z
$$
 and $U \sim U[0, 1]$.
\n- (b) If $U \le a$, set $z^* = z'$ (accepted); otherwise, set $z^* = z$ (rejected).
\n- This is a Metropolis-Hastings Markov kernel $dQ_z(z^*)$: $\overline{\pi}$ -reversible.
\n- \implies (proj_x)_# Q_z leaves $\overline{\pi}(\cdot|p_n)$ invariant!
\n

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

In most cases, q_z is chosen stochastic. In RMHMC, q_z is deterministic, defined by a map $F: T^*M \to T^*M$, i.e., $dq_z(z') = d\delta_{F(z)}(z')$.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

In most cases, q_z is chosen *stochastic*. In RMHMC, q_z is deterministic, defined by a map $F: T^*M \to T^*M$, i.e., $dq_z(z') = d\delta_{F(z)}(z')$.

Ideal setting: we choose $\mathbf{F} = s \circ \Psi_t$ for some $t > 0$. Let $z' = \mathbf{F}(z)$.

- F is symplectic, $q_z(z') = 1$ and $q_{z'}(z) = \delta_{(\text{FoF})(z)}(z) = 1$.
- $\pi(z') = \pi(z)$ by conservation of the Hamiltonian.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

In most cases, q_z is chosen stochastic. In RMHMC, q_z is deterministic, defined by a map $F: T^*M \to T^*M$, i.e., $dq_z(z') = d\delta_{F(z)}(z')$.

Ideal setting: we choose $\mathbf{F} = s \circ \Psi_t$ for some $t > 0$. Let $z' = \mathbf{F}(z)$.

- F is symplectic, $q_z(z') = 1$ and $q_{z'}(z) = \delta_{(\text{FoF})(z)}(z) = 1$.
- $\pi(z') = \pi(z)$ by conservation of the Hamiltonian.

In this case, $a(z \to z') = 1$; we just have to follow the Hamiltonian flow ! However, F cannot be computed exactly...

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

In most cases, q_z is chosen stochastic. In RMHMC, q_z is deterministic, defined by a map $F: T^*M \to T^*M$, i.e., $dq_z(z') = d\delta_{F(z)}(z')$.

Ideal setting: we choose $\mathbf{F} = s \circ \Psi_t$ for some $t > 0$. Let $z' = \mathbf{F}(z)$.

- F is symplectic, $q_z(z') = 1$ and $q_{z'}(z) = \delta_{(\text{FoF})(z)}(z) = 1$.
- $\pi(z') = \pi(z)$ by conservation of the Hamiltonian.

In this case, $a(z \to z') = 1$; we just have to follow the Hamiltonian flow ! However, F cannot be computed exactly...

Let $h > 0$ be a step-size. Consider $T_h \approx \Psi_h$ a numerical integrator such that T_h is symplectic and $s \circ T_h$ is involutive $(T_h$ is said to be reversible).

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

In most cases, q_z is chosen *stochastic*. In RMHMC, q_z is deterministic, defined by a map $F: T^*M \to T^*M$, i.e., $dq_z(z') = d\delta_{F(z)}(z')$.

Ideal setting: we choose $\mathbf{F} = s \circ \Psi_t$ for some $t > 0$. Let $z' = \mathbf{F}(z)$.

- F is symplectic, $q_z(z') = 1$ and $q_{z'}(z) = \delta_{(\text{FoF})(z)}(z) = 1$.
- $\pi(z') = \pi(z)$ by conservation of the Hamiltonian.

In this case, $a(z \to z') = 1$; we just have to follow the Hamiltonian flow ! However, F cannot be computed exactly...

Let $h > 0$ be a step-size. Consider $T_h \approx \Psi_h$ a numerical integrator such that T_h is symplectic and $s \circ T_h$ is involutive $(T_h$ is said to be reversible).

Realistic setting: we choose $F = s \circ T_h$. Let $z' = F(z)$.

- F is symplectic, $q_z(z') = 1$ and $q_{z'}(z) = \delta_{(\text{FoF})(z)}(z) = 1$.
- However, $\pi(z') \neq \pi(z)$ due to ODE integration error.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

.

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

In most cases, q_z is chosen *stochastic*. In RMHMC, q_z is deterministic, defined by a map $F: T^*M \to T^*M$, i.e., $dq_z(z') = d\delta_{F(z)}(z')$.

Ideal setting: we choose $\mathbf{F} = s \circ \Psi_t$ for some $t > 0$. Let $z' = \mathbf{F}(z)$.

- F is symplectic, $q_z(z') = 1$ and $q_{z'}(z) = \delta_{(\text{FoF})(z)}(z) = 1$.
- $\pi(z') = \pi(z)$ by conservation of the Hamiltonian.

In this case, $a(z \to z') = 1$; we just have to follow the Hamiltonian flow ! However, F cannot be computed exactly...

Let $h > 0$ be a step-size. Consider $T_h \approx \Psi_h$ a numerical integrator such that T_h is symplectic and $s \circ T_h$ is involutive $(T_h$ is said to be reversible).

Realistic setting: we choose $F = s \circ T_h$. Let $z' = F(z)$.

- F is symplectic, $q_z(z') = 1$ and $q_{z'}(z) = \delta_{(\text{FoF})(z)}(z) = 1$.
- However, $\pi(z') \neq \pi(z)$ due to ODE integration error.

In this case, the acceptance ratio simplifies as

$$
a(z \to z') = \min\left(1, \frac{\exp(-H(z'))}{\exp(H(z))}\right)
$$

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Description of RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

Algorithm 1: RMHMC [\(Girolami and Calderhead, 2011\)](#page-63-4)

HMC Input: $(x_0, p_0) \in T^*M$, $\beta \in (0, 1]$, $N \in \mathbb{N}^*$ **ODE Input:** $h > 0$, $K \in \mathbb{N}^*$, numerical integrator $T_h : T^*M \to T^*M$ Output: $(x_n, p_n)_{n \in [N]}$ 1 for $n = 1, \ldots, N$ do 2 Step 1: momentum sampling with refresh 3 $\tilde{p} \sim N(0, g(x_{n-1}))$, $p_{n-1} \leftarrow \sqrt{1 - \beta} p_{n-1} + \sqrt{\beta} \tilde{p}$ 4 Step 2: performing K steps of discretized ODE [\(1\)](#page-0-1) with T_h 5 $(x', p') \leftarrow (\mathrm{T}_h)^K(x_{n-1}, p_{n-1}) \implies (x', p') \approx \Psi_{Kh}(x_{n-1}, p_{n-1})$ 6 Step 3: applying the Metropolis-Hastings (MH) acceptance filter 7 $a \leftarrow min(1, exp[-H(x', p') + H(x_{n-1}, p_{n-1})])$, $u \sim U[0, 1]$ 8 if $u \le a$ then $\bar{x}_n, \bar{p}_n \leftarrow x', p'$; 9 else $\bar{x}_n, \bar{p}_n \leftarrow x_{n-1}, p_{n-1}$; 10 Step 4: flipping the sign of the momentum 11 $x_n, p_n \leftarrow \bar{x}_n, -\bar{p}_n$ (guarantees reversibility and exploration)

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Results on RMHMC

Originally, [Girolami and Calderhead \(2011\)](#page-63-4) considered posterior distributions from Bayesian models and chose:

- g as the Fisher-Rao metric,
- T_h as the Leapfrog integrator [\(Hairer et al., 2006\)](#page-63-5) with fixed-point steps.

Figure: Figure 4 in [Girolami and Calderhead \(2011\)](#page-63-4): HMC (left) vs RMHMC (right).

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Results on RMHMC

Originally, [Girolami and Calderhead \(2011\)](#page-63-4) considered posterior distributions from Bayesian models and chose:

- g as the Fisher-Rao metric,
- T_h as the Leapfrog integrator [\(Hairer et al., 2006\)](#page-63-5) with fixed-point steps.

Figure: Figure 4 in [Girolami and Calderhead \(2011\)](#page-63-4): HMC (left) vs RMHMC (right).

- Q1: Can we enlarge the design of g to geometric constraints ?
- **Q2:** Can we derive theoretical results from the properties of M, g and T_h ?

 $-10⁻¹$

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Introducing self-concordance

If M is convex, one can design a **self-concordant barrier** ϕ on M [\(Nesterov and](#page-64-7) [Nemirovskii, 1994\)](#page-64-7) and set $\mathfrak{g} = D^2 \phi$, as done by [Kook et al. \(2022\)](#page-63-6).

Definition 1 (Self-concordance, [Nesterov and Nemirovskii \(1994\)](#page-64-7))

Let U be a non-empty open convex domain in $\mathbb{R}^d.$ A function $\phi: \mathsf{U} \to \mathbb{R}$ is said to be a *ν*-self-concordant (s.-c.) barrier (with $\nu > 1$) on U if it satisfies:

- (a) $\phi \in C^3(U, \mathbb{R})$ and ϕ is convex,
- (b) $\phi(x) \rightarrow +\infty$ as $x \rightarrow \partial U$,
- (c) Other technical conditions on $D^3\phi$, $D^2\phi$, $D\phi$:

 $\approx D^2\phi$ is 2-Lipschitz and $\approx \phi$ is ν -Lipschitz .

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Introducing self-concordance

If M is convex, one can design a **self-concordant barrier** ϕ on M [\(Nesterov and](#page-64-7) [Nemirovskii, 1994\)](#page-64-7) and set $\mathfrak{g} = D^2 \phi$, as done by [Kook et al. \(2022\)](#page-63-6).

 \rightarrow S_{-c}. barriers are well-suited for their minimization by the Newton method.

- → The analysis of the convergence of Newton methods based on s.-c. is based on the metric $\mathfrak{g}(x) = D^2 \phi(x)$.
- → Balls for $\left\| \cdot \right\|_{\mathfrak{g}(x)}$ (Dikin ellipsoids) are central for the study of s.-c.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Self-concordance on a polytope

Assume that M is the $\mathsf{polytope}\; \mathsf{M}=\{x\in\mathbb{R}^d\,:\; Ax$

The logarithmic barrier on M is given by

$$
\phi(x) = -\sum_{i=1}^m \ln\left(b_i - A_i^\top x\right) ,
$$

and verifies [\(Nesterov and Nemirovski, 1998\)](#page-64-8):

• ϕ is a *m*-self-concordant barrier.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Self-concordance on a polytope

Assume that M is the $\mathsf{polytope}\; \mathsf{M}=\{x\in\mathbb{R}^d\,:\; Ax$

The **logarithmic barrier** on M is given by

$$
\phi(x) = -\sum_{i=1}^m \ln\left(b_i - A_i^\top x\right) ,
$$

and verifies [\(Nesterov and Nemirovski, 1998\)](#page-64-8):

• ϕ is a *m*-self-concordant barrier.

Figure: A self-concordant (logarithmic) barrier for a polytope $M \subset \mathbb{R}^2$ with three Dikin ellipsoids $\{y \in \mathbb{R}^d : y^\top \mathfrak{g}(x)y < 1\}$ centered at $x = (0,0), (0,1.5), (1.5,-1)$.

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

Self-concordance in sampling algorithms

Self-concordant barriers provide theoretical guarantees for polytope sampling:

- Dikin Walk [\(Kannan and Narayanan, 2009\)](#page-63-7) \rightarrow no experiment
- Geodesic Walk [\(Lee and Vempala, 2017a\)](#page-64-9) \rightarrow no experiment
- RMHMC with a metric derived from a s.-c. barrier:

1 https://github.[com/ConstrainedSampler/PolytopeSample](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[r](#page-35-0)[Mat](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[l](#page-37-0)[a](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[b](#page-35-0) \rightarrow \pm \rightarrow $U_{\rm F}$ with Self-Constraint Barrier Hamiltonian Monte Carlos Hamilton

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

Self-concordance in sampling algorithms

Self-concordant barriers provide theoretical guarantees for polytope sampling:

- Dikin Walk [\(Kannan and Narayanan, 2009\)](#page-63-7) \rightarrow no experiment
- Geodesic Walk [\(Lee and Vempala, 2017a\)](#page-64-9) \rightarrow no experiment
- RMHMC with a metric derived from a s.-c. barrier: RHMC (Lee and Vempala, 2018) \rightarrow no experiment:
	- Consider the time-continuous Hamiltonian dynamics.
	- Assume that it exists for all time and is unique: hard to verify!
	- This assumption is not verified in the paper.

1 https://github.[com/ConstrainedSampler/PolytopeSample](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[r](#page-36-0)[Mat](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[l](#page-38-0)[a](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[b](#page-35-0) \rightarrow \pm \rightarrow $U_{\rm F}$ with Self-Constraint Barrier Hamiltonian Monte Carlos Hamilton

Self-concordance in sampling algorithms

Self-concordant barriers provide theoretical guarantees for polytope sampling:

- Dikin Walk [\(Kannan and Narayanan, 2009\)](#page-63-7) \rightarrow no experiment
- Geodesic Walk [\(Lee and Vempala, 2017a\)](#page-64-9) \rightarrow no experiment
- RMHMC with a metric derived from a s.-c. barrier: RHMC [\(Lee and Vempala, 2018\)](#page-64-10) \rightarrow no experiment:
	- Consider the time-continuous Hamiltonian dynamics.
	- Assume that it exists for all time and is unique: hard to verify!
	- This assumption is not verified in the paper.

CRHMC [\(Kook et al., 2022\)](#page-63-6):

- Here, T_h computes exact solutions of an implicit scheme Φ_h , that is proved to symplectic and reversible.
- Assume that Φ_h admits a unique solution for any initial point \implies this guarantees reversibility as explained before.
- However, this assumption is not verified in practice.
- \bullet Their experiments¹ highlight asymptotic bias!

 $\texttt{1}$ https://github.[com/ConstrainedSampler/PolytopeSample](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[r](#page-37-0)[Mat](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[l](#page-39-0)[a](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[b](#page-35-0) \oplus (a) a barrier \oplus a) \oplus \oplus

Self-concordance in sampling algorithms

Self-concordant barriers provide theoretical guarantees for polytope sampling:

- Dikin Walk [\(Kannan and Narayanan, 2009\)](#page-63-7) \rightarrow no experiment
- Geodesic Walk [\(Lee and Vempala, 2017a\)](#page-64-9) \rightarrow no experiment
- RMHMC with a metric derived from a s.-c. barrier: RHMC [\(Lee and Vempala, 2018\)](#page-64-10) \rightarrow no experiment:
	- Consider the time-continuous Hamiltonian dynamics.
	- Assume that it exists for all time and is unique: hard to verify!
	- This assumption is not verified in the paper.

CRHMC [\(Kook et al., 2022\)](#page-63-6):

- Here, T_h computes exact solutions of an implicit scheme Φ_h , that is proved to symplectic and reversible.
- Assume that Φ_h admits a unique solution for any initial point \implies this guarantees reversibility as explained before.
- However, this assumption is not verified in practice.
- \bullet Their experiments¹ highlight asymptotic bias!

Can we have better practical and theoretical guarantees ?

 $\texttt{1}$ https://github.[com/ConstrainedSampler/PolytopeSample](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[r](#page-38-0)[Mat](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[l](#page-40-0)[a](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[b](#page-35-0) \oplus (a) a barrier \oplus a) \oplus \oplus

Self-concordance in sampling algorithms

Self-concordant barriers provide theoretical guarantees for polytope sampling:

• RMHMC with a metric derived from a s.-c. barrier:

RHMC [\(Lee and Vempala, 2018\)](#page-64-10) \rightarrow no experiment:

- Consider the time-continuous Hamiltonian dynamics.
- Assume that it exists for all time and is unique: hard to verify!
- This assumption is not verified in the paper.

CRHMC [\(Kook et al., 2022\)](#page-63-6):

- Here, T_h computes exact solutions of an implicit scheme Φ_h . that is proved to symplectic and reversible.
- Assume that Φ_h admits a unique solution for any initial point \implies this guarantees reversibility as explained before.
- However, this assumption is not verified in practice.
- \bullet Their experiments² highlight asymptotic bias!

Can we have better practical and theoretical guarantees ?

[Zappa et al. \(2018\)](#page-65-1) tackle a similar bias for Ball Walk by enforcing the reversibility of the Markov kernel with an "involution checking".

 2 https://github.[com/ConstrainedSampler/PolytopeSample](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[r](#page-39-0)[Mat](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[l](#page-41-0)[a](https://github.com/ConstrainedSampler/PolytopeSamplerMatlab)[b](#page-39-0) \oplus and \oplus and \oplus and \oplus

[Conclusion](#page-60-0)

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

What is at stake ?

- → Traditional MCMC approaches are not efficient.
- \rightarrow RMHMC implemented with g may work but comes with asymptotic bias.
- \rightarrow This bias could be tackled by an "involution checking step" (ICS).

Can we implement this check in RMHMC and derive satisfying theoretical and numerical results ? \rightarrow M.N., Valentin de Bortoli, Alain Durmus (NeurlPS, 2023). Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo (BHMC).

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Notation and reminders

• Momentum reversal operator: $s(x, p) = (x, -p)$.

Definition 2 (Reversibility up to momentum reversal.)

Let $Q: T^*M \times \mathcal{B}(T^*M) \to [0, 1]$ be a transition probability kernel and let $\bar{\pi}$ be a probability distribution on $\mathrm{T}^\star\mathsf{M}.$ Then, Q is said to be reversible up to momentum reversal with respect to $\bar{\pi}$ if for any $f \in \mathrm{C}(\mathrm{T}^{\star}\mathsf{M} \times \mathrm{T}^{\star}\mathsf{M}, \mathbb{R})$ with compact support

$$
\int_{\mathbf{T}^{\star}\mathsf{M}\times\mathbf{T}^{\star}\mathsf{M}}f(z,z')Q(z,\mathrm{d}z')\bar{\pi}(\mathrm{d}z)=\int_{\mathbf{T}^{\star}\mathsf{M}\times\mathbf{T}^{\star}\mathsf{M}}f(s(z'),s(z))Q(z,\mathrm{d}z')\bar{\pi}(\mathrm{d}z).
$$

[Motivations and background](#page-2-0) [Description of BHMC](#page-44-0)

> [Results](#page-55-0) [Conclusion](#page-60-0)

[General setting](#page-3-0) [RMHMC: basics and challenges](#page-7-0) [Summary of the motivations and assumptions](#page-41-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Notation and reminders

- Momentum reversal operator: $s(x, p) = (x, -p)$.
- Pushforward: $\varphi_{\#}\mu \in \mathscr{P}(Y)$ is the pushforward of $\mu \in \mathscr{P}(X)$ by $\varphi : X \to Y$.

Lemma 3 (Preservation of measure.)

Let $Q: T^*M \times \mathcal{B}(T^*M) \to [0,1]$ be a transition probability kernel and let $\bar{\pi}$ be a probability distribution on $\mathrm{T}^\star\mathsf{M}.$ Assume that $s_{\#}\bar{\pi}=\bar{\pi}$ and that Q is reversible up to momentum reversal with respect to $\bar{\pi}$. Then $\bar{\pi}$ is an invariant measure for Q.

[Hamiltonian integrators of BHMC](#page-45-0) [Introducing BHMC](#page-54-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Outline

2 [Description of BHMC](#page-44-0)

- [Hamiltonian integrators of BHMC](#page-45-0)
- [Introducing BHMC](#page-54-0)

[Hamiltonian integrators of BHMC](#page-46-0) [Introducing BHMC](#page-54-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by [Shahbaba et al. \(2014\)](#page-65-2), we split the Hamiltonian $H = H_1 + H_2$,

$$
\begin{aligned} H_1(x,p) &= V(x) + \tfrac{1}{2}\log(\det \mathfrak{g}(x))\;, \qquad &\text{(separable)}\\ H_2(x,p) &= \tfrac{1}{2}\|p\|_{\mathfrak{g}(x)^{-1}}^2\;. \end{aligned}
$$

[Hamiltonian integrators of BHMC](#page-45-0) [Introducing BHMC](#page-54-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by [Shahbaba et al. \(2014\)](#page-65-2), we split the Hamiltonian $H = H_1 + H_2$,

$$
H_1(x,p) = V(x) + \frac{1}{2}\log(\det \mathfrak{g}(x)),
$$
 (separable)

$$
H_2(x,p) = \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2.
$$
 (non separable)

\rightarrow Explicit integrator of H_1

 $\mathrm{S}_{h/2}:\mathrm{T}^{\star}{\mathsf{M}}\to \mathrm{T}^{\star}{\mathsf{M}}$ is the map defined by $\mathrm{S}_{h/2}(x,p)=(x,p-\frac{h}{2}\partial_{x}H_{1}(x,p))$ \implies S_{h/2} is symplectic and reversible.

- $S_{h/2}$ approximates the dynamics of H_1 on a step-size $h/2$.
- $s \circ S_{h/2}$ is an involution.

[Hamiltonian integrators of BHMC](#page-45-0) [Introducing BHMC](#page-54-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by [Shahbaba et al. \(2014\)](#page-65-2), we split the Hamiltonian $H = H_1 + H_2$,

$$
H_2(x,p) = \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2 .
$$
 (non separable)

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by [Shahbaba et al. \(2014\)](#page-65-2), we split the Hamiltonian $H = H_1 + H_2$,

 $H_2(x,p) = \frac{1}{2} ||p||_{\mathfrak{g}}^2$ (non separable)

\rightarrow Implicit integrator of H_2

 G_h is the Leapfrog integrator of H_2 with step-size h : for any $z^{(0)}\in \mathrm{T}^\star\mathsf{M}$, $\mathrm{G}_h(z^{(0)})\subset \mathrm{T}^\star\mathsf{M}$ consists of points $z^{(1)}=(x^{(1)},p^{(1)})$ that solve

$$
p^{(1/2)} = p^{(0)} - \frac{h}{2} \partial_x H_2(x^{(0)}, p^{(1/2)}),
$$

\n
$$
x^{(1)} = x^{(0)} + \frac{h}{2} [\partial_p H_2(x^{(0)}, p^{(1/2)}) + \partial_p H_2(x^{(1)}, p^{(1/2)})],
$$

\n
$$
p^{(1)} = p^{(1/2)} - \frac{h}{2} \partial_x H_2(x^{(1)}, p^{(1/2)}).
$$

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by [Shahbaba et al. \(2014\)](#page-65-2), we split the Hamiltonian $H = H_1 + H_2$,

 $H_2(x,p) = \frac{1}{2} ||p||_{\mathfrak{g}}^2$ (non separable)

\rightarrow Implicit integrator of H_2

 G_h is the Leapfrog integrator of H_2 with step-size h : for any $z^{(0)}\in \mathrm{T}^\star\mathsf{M}$, $\mathrm{G}_h(z^{(0)})\subset \mathrm{T}^\star\mathsf{M}$ consists of points $z^{(1)}=(x^{(1)},p^{(1)})$ that solve

$$
p^{(1/2)} = p^{(0)} - \frac{h}{2} \partial_x H_2(x^{(0)}, p^{(1/2)}),
$$

\n
$$
x^{(1)} = x^{(0)} + \frac{h}{2} [\partial_p H_2(x^{(0)}, p^{(1/2)}) + \partial_p H_2(x^{(1)}, p^{(1/2)})],
$$

\n
$$
p^{(1)} = p^{(1/2)} - \frac{h}{2} \partial_x H_2(x^{(1)}, p^{(1/2)}).
$$

 \implies G_h is symplectic and reversible [\(Hairer et al., 2006\)](#page-63-5)

- \implies above, there may be either 0, 1, 2,... solutions !
	- $F_h = G_h \circ s$ is a set-valued map.
	- $F_h \circ s$ approximates the dynamics of H_2 on a step-size h.
	- If $|F_h(z)| > 0$ then $z \in (F_h \circ F_h)(z)$ (almost an involution).

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by [Shahbaba et al. \(2014\)](#page-65-2), we split the Hamiltonian $H = H_1 + H_2$,

$$
H_1(x, p) = V(x) + \frac{1}{2}\log(\det \mathfrak{g}(x)),
$$
 (separable)

$$
H_2(x, p) = \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2.
$$
 (non separable)

- \rightarrow Explicit integrator of H_1
	- Map $S_{h/2}: T^*M \to T^*M$ defined by $S_{h/2}(x,p) = (x, p \frac{h}{2} \partial_x H_1(x,p)).$
- \rightarrow Implicit integrator of H_2
	- \bullet Set-valued map $\mathrm{F}_h = \mathrm{G}_h \circ s$, where $\mathrm{G}_h : \mathrm{T}^\star \mathsf{M} \to 2^{\mathrm{T}^\star \mathsf{M}}$ is the Leapfrog integrator of H_2 with step-size h (none, one or multiple solutions).

Explicit and implicit integrators

How to integrate the ODEs given by the Riemannian Hamiltonian H ?

As done by [Shahbaba et al. \(2014\)](#page-65-2), we split the Hamiltonian $H = H_1 + H_2$,

$$
H_1(x, p) = V(x) + \frac{1}{2} \log(\det \mathfrak{g}(x)),
$$
 (separable)

$$
H_2(x, p) = \frac{1}{2} ||p||_{\mathfrak{g}(x)^{-1}}^2.
$$
 (non separable)

- \rightarrow Explicit integrator of H_1
	- Map $S_{h/2}: T^*M \to T^*M$ defined by $S_{h/2}(x,p) = (x, p \frac{h}{2} \partial_x H_1(x,p)).$
- \rightarrow Implicit integrator of H_2
	- \bullet Set-valued map $\mathrm{F}_h = \mathrm{G}_h \circ s$, where $\mathrm{G}_h : \mathrm{T}^\star \mathsf{M} \to 2^{\mathrm{T}^\star \mathsf{M}}$ is the Leapfrog integrator of H_2 with step-size h (none, one or multiple solutions).
- \rightarrow Implicit integrator of H
	- Set-valued map $R_h = (s \circ S_{h/2}) \circ F_h \circ (s \circ S_{h/2}).$
	- By composition, R_h is symplectic and reversible.
	- $s \circ R_h$ approximates the dynamics of H on a step-size h.

[Hamiltonian integrators of BHMC](#page-45-0) [Introducing BHMC](#page-54-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Numerical integrators

In practice, we do not have access to F_h but approximate it with a numerical ${\sf map}\,\, \Phi_h,$ defined on a domain ${\rm dom}_{\Phi_h}\subset \mathrm{T}^\star \mathsf{M}$ with $\Phi_h({\rm dom}_{\Phi_h})\subset \mathrm{T}^\star \mathsf{M}.$

We also define the **numerical map** $\mathrm{R}^\Phi_h: (s \circ \mathrm{S}_{h/2})(\mathrm{dom}_{\Phi_h}) \subset \mathrm{T}^\star \mathsf{M} \to \mathrm{T}^\star \mathsf{M}$

$$
\mathcal{R}_h^{\Phi} = (s \circ \mathcal{S}_{h/2}) \circ \Phi_h \circ (s \circ \mathcal{S}_{h/2}).
$$

Similarly to R_h , $s\circ \mathrm{R}^\Phi_h$ approximates the dynamics of H on a step-size h .

How to implement Φ_h ?

- Fixed-point solver (ours, [Kook et al. \(2022\)](#page-63-6)).
- Newton's solver [\(Brofos and Lederman, 2021a,](#page-63-8)[b\)](#page-63-9).

[Hamiltonian integrators of BHMC](#page-45-0) [Introducing BHMC](#page-54-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Numerical integrators

In practice, we do not have access to F_h but approximate it with a numerical ${\sf map}\,\, \Phi_h,$ defined on a domain ${\rm dom}_{\Phi_h}\subset \mathrm{T}^\star \mathsf{M}$ with $\Phi_h({\rm dom}_{\Phi_h})\subset \mathrm{T}^\star \mathsf{M}.$

We also define the **numerical map** $\mathrm{R}^\Phi_h: (s \circ \mathrm{S}_{h/2})(\mathrm{dom}_{\Phi_h}) \subset \mathrm{T}^\star \mathsf{M} \to \mathrm{T}^\star \mathsf{M}$

$$
R_h^{\Phi} = (s \circ S_{h/2}) \circ \Phi_h \circ (s \circ S_{h/2}).
$$

Similarly to R_h , $s\circ \mathrm{R}^\Phi_h$ approximates the dynamics of H on a step-size h .

How to implement Φ_h ?

- Fixed-point solver (ours, [Kook et al. \(2022\)](#page-63-6)).
- Newton's solver [\(Brofos and Lederman, 2021a,](#page-63-8)[b\)](#page-63-9).

For any $z \in T^*M$, we define on T^*M the norm $\|\cdot\|_z$ by

 $||z'||_z = ||x'||_{\mathfrak{g}(x)} + ||p'||_{\mathfrak{g}(x)^{-1}}, z' = (x', p')$.

- On x' : the Dikin norm.
- On p' : the "natural" norm induced by $\mathfrak{g}(x)^{-1}.$

[Hamiltonian integrators of BHMC](#page-45-0) [Introducing BHMC](#page-54-0)

BHMC: CRHMC with "involution checking step"

Algorithm 2: Barrier HMC (BHMC)

HMC Input: $(x_0, p_0) \in T^*M$, $\beta \in (0, 1]$, $N \in \mathbb{N}$ **ODE Input:** $h > 0$, $\eta > 0$, numerical integrator Φ_h with domain dom $_{\Phi_h}$ Output: $(x_n, p_n)_{n \in [N]}$ 1 for $n = 1, \ldots, N$ do 2 Step 1: $\tilde{p} \sim \mathcal{N}(0, \mathfrak{g}(x_{n-1}))$, $p_{n-1} \leftarrow \sqrt{1 - \beta}p_{n-1} + \sqrt{\beta}\tilde{p}$ 3 Step 2: solving discretized ODE [\(1\)](#page-0-1) with Φ_h $\begin{array}{cc} \mathcal{A} & x', p' \leftarrow x_{n-1}, p_{n-1}, & x^{(0)}, p^{(0)} \leftarrow (s \circ \mathrm{S}_{h/2})(x_{n-1}, p_{n-1}) \end{array}$ 5 if $z^{(0)} \in \text{dom}_{\Phi_h}$ then 6 $z^{(1)} = \Phi_h(z^{(0)})$, err = $||z^{(0)} - \Phi_h(z^{(1)})||_{z^{(0)}} + ||z^{(0)} - \Phi_h(z^{(1)})||_{\Phi_h(z^{(1)})}$ 7 if $z^{(1)} \in \text{dom}_{\Phi_h}$ & $\text{err} \leq \eta$ then $x', p' \leftarrow (s \circ S_{h/2})(x^{(1)}, p^{(1)})$; 8 Step 3: $a \leftarrow \min(1, \exp[-H(x', p') + H(x_{n-1}, p_{n-1})])$, $u \sim U[0, 1]$ 9 if $u \le a$ then $\bar{x}_n, \bar{p}_n \leftarrow x', p'$; 10 else $\bar{x}_n, \bar{p}_n \leftarrow x_{n-1}, p_{n-1}$; 11 Step 4: $x_n, p_n \leftarrow \bar{x}_n, -\bar{p}_n$ (guarantees reversibility and exploration)

- \rightarrow Checking that Φ_h is well defined on the iterates.
- \rightarrow New: checking that $(\Phi_h \circ \Phi_h)(z^{(0)}) \approx z^{(0)} \rightarrow$ involution checking !

[Motivations and background](#page-2-0) [Description of BHMC](#page-44-0) [Results](#page-55-0) [Conclusion](#page-60-0) [Assumptions](#page-56-0) [Results on integrators](#page-57-0) [Results on reversibility](#page-58-0) [Numerical experiments](#page-59-0)

Outline

¹ [Motivations and background](#page-2-0)

² [Description of BHMC](#page-44-0)

³ [Results](#page-55-0)

- **•** [Assumptions](#page-56-0)
- [Results on integrators](#page-57-0)
- [Results on reversibility](#page-58-0)
- [Numerical experiments](#page-59-0)

⁴ [Conclusion](#page-60-0)

Assumptions

We aim at sampling from a target distribution π supported on M

$$
d\pi(x)/dx \propto \exp[-V(x)] \quad , \quad V \in C^2(\mathsf{M}, \mathbb{R}) .
$$

A1 (Assumption on M.)

M is an open convex bounded subset of \mathbb{R}^d .

A2 (Assumption on g.)

There exists ϕ , *v*-s.-c. barrier on M such that $\mathfrak{g} = D^2 \phi$.

[Assumptions](#page-56-0) [Results on integrators](#page-57-0) [Results on reversibility](#page-58-0) [Numerical experiments](#page-59-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

From implicit to numerical integrators

We prove that F_h can be locally identified with a C^1 -diffeomorphism.

Proposition 1 (Result on F_h .)

Assume **A**1, **A**2. Let $z^{(0)} \in \mathrm{T}^\star\mathsf{M}$, then there exists $h^\star > 0$ (explicit) such that for any $h\in (0,h^\star)$, there exist $z_h^{(1)}\in \mathrm{F}_h(z^{(0)})$, a neighborhood $\mathsf{U}\subset \mathrm{T}^\star\mathsf{M}$ of $z^{(0)}$ and a C^1 -diffeomorphism $\gamma_h:\mathsf{U}\to\gamma_h(\mathsf{U})\subset\mathrm{T}^\star\mathsf{M}$ with (a) $\gamma_h(z^{(0)}) = z_h^{(1)}$ and $|\det \text{Jac}(\gamma_h)| = 1$. (b) $\gamma_h(z)$ is the only element of $F_h(z)$ in $\gamma_h(U)$ for $z \in U$.

Following Proposition 1, we derive a technical assumption on the corresponding numerical integrator Φ_h , denoted by A3: basically, we assume that Φ_h is locally involutive.

[Assumptions](#page-56-0) [Results on integrators](#page-57-0) [Results on reversibility](#page-58-0) [Numerical experiments](#page-59-0)

[Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

Deriving the reversibility in BHMC

- Q_0 : $T^*M \times \mathcal{B}(T^*M) \rightarrow [0, 1]$: the transition kernel for Step 1. \rightarrow Q₀ is reversible up to m.-r. w.r.t. $\bar{\pi}$
- $Q_1: T^*M \times \mathcal{B}(T^*M) \rightarrow [0, 1]$, the transition kernel for Steps 2 to 4. \rightarrow Q₁ is reversible up to m.-r. w.r.t. $\bar{\pi}$ under A1, A2 and A3.
- Q : T^{*}M \times $\mathcal{B}(\text{T*M}) \rightarrow [0,1]$, the transition kernel for Steps 1 to 4 such that

$$
Q(z, dz') = \int_{T^*M \times T^*M} Q_0(z, dz_1) Q_1(z_1, dz') .
$$

Theorem 4 (Reversibility of Q.)

Assume A1, A2, A3. Then, Q is reversible up to momentum reversal. In particular, $\bar{\pi}$ is an invariant measure for Q.

[Motivations and background](#page-2-0) [Description of BHMC](#page-44-0) [Results](#page-55-0) [Conclusion](#page-60-0) [Assumptions](#page-56-0) [Results on integrators](#page-57-0) [Results on reversibility](#page-58-0) [Numerical experiments](#page-59-0)

Sampling on the simplex

Parameters:

\n
$$
\rightarrow
$$
 M = { $x \in \mathbb{R}^d : \sum_{i=1}^d x_i = 1, x_i \geq 0, \forall i \in \{1, \ldots, d\}$ with $d \in \{5, 10\}$ \n

\n\n \rightarrow $\eta = 10$ if $d = 5$ and $\eta = 200$ if $d = 10$ \n

We aim to sample from a truncated Gaussian distribution, and display the estimated expectation of a fixed observable.

Figure: Comparison between n-BHMC and CRHMC on the simplex.

Maxence Noble 31 / 34

Outline

2 [Description of BHMC](#page-44-0)

³ [Results](#page-55-0)

Conclusion

M.N., Valentin de Bortoli, Alain Durmus (NeurIPS, 2023). Unbiased constrained sampling with Self-Concordant BHMC.

→ We introduced a novel version of RMHMC, Barrier HMC, relying on a "involution checking step", to sample from a distribution π over a bounded open convex subset $\mathsf{M} \subset \mathbb{R}^d$ equipped with a self-concordant barrier $\phi.$

- BHMC approximates the dynamics with a numerical integrator.
- \rightarrow We proved that π is invariant for BHMC.

→ We showed that BHMC generates less asymptotic bias than the version of RMHMC proposed by [Kook et al. \(2022\)](#page-63-6) (see the paper for more details).

Future work:

- \rightarrow Investigate the "coupled" behaviour of the hyperparameters h and η .
- \rightarrow Study the **irreducibility** of n-BHMC (not easy task).

Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo

Maxence Noble¹ Valentin de Bortoli² Alain Durmus¹

¹ Centre de Mathématiques Appliquées, Ecole Polytechnique Institut Polytechnique de Paris, France

²Département d'Informatique, École Normale Supérieure CNRS, Université PSL, Paris, France

- James Brofos and Roy R Lederman. Evaluating the implicit midpoint integrator for riemannian hamiltonian monte carlo. In International Conference on Machine Learning, pages 1072–1081. PMLR, 2021a.
- James A Brofos and Roy R Lederman. On numerical considerations for riemannian manifold hamiltonian monte carlo. arXiv preprint arXiv:2111.09995, 2021b.
- Marcus Brubaker, Mathieu Salzmann, and Raquel Urtasun. A family of mcmc methods on implicitly defined manifolds. In Artificial intelligence and statistics, pages 161–172. PMLR, 2012.
- Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987.
- A. E. Gelfand, A. F. Smith, and T.-M. Lee. Bayesian analysis of constrained parameter and truncated data problems using gibbs sampling. Journal of the American Statistical Association, 87(418):523–532, 1992.
- Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (2):123–214, 2011.
- Ernst Hairer, Marlis Hochbruck, Arieh Iserles, and Christian Lubich. Geometric numerical integration. Oberwolfach Reports, 3(1):805–882, 2006.
- Ravi Kannan and Hariharan Narayanan. Random walks on polytopes and an affine interior point method for linear programming. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 561–570, 2009.
- Yunbum Kook, Yin-Tat Lee, Ruoqi Shen, and Santosh Vempala. Sampling with riemannian hamiltonian monte carlo in a constrained space. Advances in Neural Information Processing Systems, 35:31684–31696, 2022.
- S. Lan and B. Shahbaba. Sampling constrained probability distributions using Spherical Augmentation. ArXiv e-prints, June 2015. [Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo](#page-0-0)

- John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science & Business Media, 2006.
- Yin Tat Lee and Santosh S Vempala. Geodesic walks in polytopes. In Proceedings of the 49th Annual ACM SIGACT Symposium on theory of Computing, pages 927–940, 2017a.
- Yin Tat Lee and Santosh S Vempala. Convergence rate of riemannian hamiltonian monte carlo and faster polytope volume computation. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1115–1121, 2018.
- Yin Tat Lee and Santosh Srinivas Vempala. Eldan's stochastic localization and the kls hyperplane conjecture: an improved lower bound for expansion. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 998–1007. IEEE, 2017b.
- Benedict J Leimkuhler and Robert D Skeel. Symplectic numerical integrators in constrained hamiltonian systems. Journal of Computational Physics, 112(1):117-125, 1994.
- László Lovász and Santosh Vempala. Hit-and-run from a corner. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 310–314, 2004.
- Kam-Ping Mok. Metrics and connections on the cotangent bundle. In Kodai Mathematical Seminar Reports, volume 28, pages 226–238. Department of Mathematics, Tokyo Institute of Technology, 1977.
- Yu Nesterov and Arkadi Nemirovski. Multi-parameter surfaces of analytic centers and long-step surface-following interior point methods. Mathematics of operations research, 23 (1):1–38, 1998.
- Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming. SIAM, 1994.
- Ari Pakman and Liam Paninski. Exact hamiltonian monte carlo for truncated multivariate gaussians. Journal of Computational and Graphical Statistics, 23(2):518–542, 2014.
- Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, $2(4)$: 341-363, [199](#page-63-10)6. And their also also \equiv U is the constrained sampling with U is \mathbb{R}^n . See Fig. \mathbb{R}^n , \mathbb{R}^n ,

- Babak Shahbaba, Shiwei Lan, Wesley O Johnson, and Radford M Neal. Split hamiltonian monte carlo. Statistics and Computing, 24(3):339–349, 2014.
- Emilio Zappa, Miranda Holmes-Cerfon, and Jonathan Goodman. Monte carlo on manifolds: sampling densities and integrating functions. Communications on Pure and Applied Mathematics, 71(12):2609–2647, 2018.